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ABSTRACT

A complete second-order solution is given for the hydrodynamic loads on ocean
structures in bichromatic, bidirectional waves. The solution to the first-order problem is
obtained utilizing a Green's function approach using higher order boundary elements. The
second-order hydrodynamic loads explicitly due to the second-order potential components
are computed using the indirect, assisting radiation potential approach. An efficient
numerical technique, that accounts for the directionality of the waves, is presented to treat
the free-surface integral which appears in the second-order load formulation. Numerical
results are presented which illustrate the sensitivity to wave directionality of the second-
order sum- and difference-frequency hydrodynamic loads on example structures. In
particular, arrays of bottom-mounted, surface piercing cylinders and tension-leg platforms
are considered. It is found that wave directionality may have a significant influence on the
second-order hydrodynamic loads on these structures at both sum- and difference-
frequencies and that the assumption of unidirectional waves does not always lead to

conservative estimates of the second-order loading.
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CHAPTER ONE

INTRODUCTION

As the search for offshore oil and gas reserves moves into deeper waters, a new
generation of offshore platforms is being designed to meet the operational challenges of
exploration and production in these increased water depths. One concept which has
achieved considerable success is the tension-leg platform (TLP) which is a large
displacement, multi-column, floating structure anchored to the sea bed by an array of
tendons (tethers) kept under tension by the excess buoyancy of the hull. Due to their
compliant nature, TLPs are much more sensitive to environmental load effects than
conventional fixed, jacket structures and exhibit complex responses to wave loading. In
particular, although a TLP system is designed so that the natural frequencies of its vertical
plane motions (heave, roll, pitch) are significantly higher than that of most of the ocean
wave energy, recent model tests and full-scale measurements of TLPs have indicated high
frequency resonant responses. In addition to sudden bursts of highly amplified resonant
activity, a modulating resonant response component of moderate amplitude has also been
observed. This latter response, termed "springing”, may have a significant impact on
tendon fatigue life. In the horizontal modes (surge, sway, yaw), TLPs have very long
natural periods, and so also exhibit resonant response at low frequencies. Therefore, the
low-frequency wave loading is also an important consideration and may provide the design
values of the platform set down and offset. In an irregular sea that is assumed to consist of
a superposition of linear wave components, these high and low frequency loads are
second-order effects arising from products of linear (first-order) terms. For a structure
such as a TLP which consists exclusively of large diameter columns and pontoons, the
high and low frequency hydrodynamic loading may be predicted on the basis of second-

order potential theory.
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The present research may be conveniently divided into two parts in accordance with
the level of integration required to obtain the solution of the first-order velocity potential,
Due to the large computational effort required to obtain the hydrodynamic loads on
arbitrarily shaped structures in the ocean, solutions to two special cases are presented in

this dissertation, namely:

(1) the computation of sum- and difference-frequency hydrodynamic loads on arbitrarily
shaped three-dimensional structures such as TLPs in bichromatic, bidirectional waves. The
water depth is assumed infinite. Attention is focused on the effect of wave directionality as

.

well as the effect of body motions on the hydrodynamic loads on the structure.

(2) the computation of the sum- and difference-frequency hydrodynamic loads on arrays of
bottom-mounted, surface-piercing cylinders in bichromatic, bidirectional waves in water of
uniform finite depth. Particular attention is given to the effect of wave directionality on the
second-order hydrodynamic loads experienced by the cylinders. The possibility of using
this geometry, which requires considerably less computational effort, to estimate the sum-

frequency loads on a deep draft TLP is also investigated.

For both cases, the solution is based on a source distribution approach which yields
the first-order velocity potential at any point in the fluid domain as the integral of a Green's
function and a source strength over the wetted surface of the structure. For the case of
arbitrarily shaped structures, a three-dimensional deep water Green's function which
satisfies the first-order free-surface condition, is utilized together with higher-order surface
elements on the structure. For structures with constant cross-section extending from the
sea bed to the free surface, the constant cross-section is exploited to express the vertical

dependency of the solution in terms of eigenfunction expansions, thereby rendering the
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problem two-dimensional in the horizontal plane. For these structures, a suitable two-

dimensional Green's function is utilized together with higher-order line elements.

These two parts of the research share several common aspects. For instance, the
general expression for the second-order hydrodynamic loads at both the sum- and
difference-frequency has the same form regardless of the structure being considered. This
results in similar treatment of the free-surface integral present in the expressions for the
hydrodynamic loads. The accurate computation of the sum- and difference-frequency
hydrodynamic loads depends oin a robust solution for the first-order potentials. Taking this

into account, the following format is used for this dissertation:

Chapter One consists of an introduction and a dissertation outline. In Chapter Two a
review of the literature relating to areas (1) and (2) above is covered. Chapter Three starts
with the solution to the first-order problem for an arbitrarily shaped structure situated in
infinite water depth. Numerical solutions for first-order potentials may be obtained
utilizing a boundary integral method using a suitable Green's function. This solution may
be achieved in one of two ways. The first method is to apply Green's second identity to
both the scattered (radiated) potential and the Green's function, discretize the surface of the
structure and describe the variation of both the velocity potential and the normal component
of the velocity over each element in terms of corresponding values at the nodes and shape
functions. This procedure results in a system of linear equations which may be solved for
the unknown velocity potentials at the nodes. Through the application of Green's second
identity, now with the velocity potentials on the structure known, the potentials anywhere
in the fluid domain may be determined. The second method is to describe the scattered
(radiated) potential as the integral over the wetted surface of the structure of a suitable
Green's function and a source distribution. The derivative of the scattered (radiated)

potential (which is known in terms of the structural boundary condition) in a direction
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normal to the structural surface results in an integral equation relating the source strength at
a point on the structure to the normal scattered (radiated) velocities. Discretizing the surface
of the structure such that the source strength variation over each element is described in
terms of the nodal strengths and shape functions results in a set of linear equations which
may be solved for the nodal source strengths. Once the nodal source strengths are
determined, the velocity potential, and water particle velocities anywhere in the fluid
domain may be obtained. One of the advantages of the source distribution method is that it
provides for a more accurate computation of the water particle velocities since numerical
differentiation of the potentials is avoided. For this reason, this method is employed to

compute the first-order velocity potentials in the present work.

The derivation of the second-order hydrodynamic sum- and difference-frequency
loads on an arbitrarily shaped structure in deep water subject to bichromatic bidirectional
waves is also presented in Chapter Three. The indirect, assisting radiation potential
approach is used to determine the second-order hydrodynamic loading due to the second-
order potential without the explicit calculation of that potential. The second-order
hydrodynamic loads consist of a free-surface integral and body integrals. The integral over
the free-surface appearing in the formulation for the second-order hydrodynamic loads due
to the second-order potential is divided into two regions, an interior region containing the
structure and an exterior region extending to infinity in the horizontal plane. The integral
over the interior region is performed numerically and, by utilizing the asymptotic forms of
the potentials, the integration over the exterior region is carried out analytically in terms of

Fresnel functions.
Chapter Four addresses the numerical convergence of the solution presented in

Chapter Three. In particular, the accuracy of the first-order solution is investigated. Also in

Chapter Four, numerical examples for the ISSC TLP, which illustrate the effect of wave
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directionality as well as the effect of first-order body motions on the second-order sum-
and difference-frequency loads are presented. The numerical convergence of the free-
surface integral is not discussed in this chapter. Rather, it is addressed in Chapter Six
when computing the sum-frequency loads on a structure consisting of four bottom-

mounted, surface-piercing cylinders.

Chapter Five initially presents the solution for the first-order diffraction and radiated
potentials for an array of bottom-mounted, surface-piercing cylinders of arbitrary cross-
section. The constant structural cross-section of the array may be exploited to provide a
computationally efficient form for the first-order solution. The vertical dependency of the
first-order diffracted potential and the associated linearized radiation potentials may be
expressed in terms of eigenfunction expansions and a two-dimensional Green's function
approach utilized to obtain the solution at this order. Chapter Five continues with the
derivation of the expressions for the sum- and difference-frequency hydrodynamic loads on
arrays of bottom mounted cylinders of arbitrary cross-section. As was mentioned above,
the form for these loads is very similar to those derived in Chapter Three for an arbitrarily
shaped three-dimensional ocean structure. The main difference is that for arrays of bottom
mounted cylinders, no body motions are present. Also, since the cylinders are independent
of each other, it may be of interest to obtain the hydrodynamic loads on each of the
cylinder. This is accomplished by calculating the assisting radiated potential due to the

oscillation of an individual cylinder with all others stationary.

The method derived in Chapter Five is applied to obtain the sum-frequency
hydrodynamic loads on a four-cylinder structure. This structure is chosen because it may
be used to model a deep draft TLP. Chapter Six begins by discussing the numerical
convergence of the first-order solution for the four-cylinder structure, as well as the free-

surface integral. After this discussion, numerical results for the sum-frequency
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hydrodynamic loads are presented. Although the derivation of Chapter Five allows for the
computation of the hydrodynamic loads on each of the cylinders, the four cylinders are
treated as a rigid structure because they are used to model a deep draft TLP. One of the
advantages of using this two dimensional idealization is that it allows for the efficient
computation of the hydrodynamic loads on deep draft TLPs over a much higher range of

frequencies since it does not require a large number of nodes to describe the structure.
Finally, the conclusions of this research and a discussion of their significance are

presented in Chapter Seven. References and appendices follow the text and complete the

dissertation.
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CHAPTER TWO

LITERATURE REVIEW

The computation of second-order hydrodynamic loads on arbitrarily shaped bodies
depends on a robust solution to the linear diffraction problem. Accurate first-order
solutions may be obtained using a boundary element approach using a suitable free-surface
Green's function whose form is well-known. At the second-order, either a direct approach
in which the second-order potential is computed explicitly, or an indirect approach based
on the assisting radiation potential technique may be used (Lee et al., 1991; Eatock Taylor
and Chau, 1991; Kim, 1991; Zaraphonitis and Papanikolaou, 1993). Most previous work
on the effects of wave directionality has been restricted to low-frequency loads (Eatock
Taylor et al., 1988; Kim and Yue, 1989; Kim, 1992). It has been found that the
assumption of wave unidirectionality is not necessarily conservative as far as low-
frequency loading is concerned and that a simple superposition of directional wave
components may not yield reliable results. Recently, Vazquez and Williams (1994)
investigated the second-order sum- and difference-frequency forces due to bidirectional
waves on an array of bottom-mounted, surface-piercing cylinders. The analysis was an
extension of the unidirectional waves solution of Moubayed and Williams (1992a) and is
based on a two-dimensional boundary element approach in the horizontal plane. The above
conclusions regarding the effects of wave directionality on low-frequency forces were also

shown to be true for the sum-frequency case.

Although the general form for the computation of the second-order hydrodynamic
loads on ocean structures seems relatively straightforward, it should be noted that it is in
fact computationally intensive. Newman and Lee (1992) discuss the sensitivity of wave

loads to the discretization of bodies. Techniques aimed at improving the efficiency by
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which converged first- and second-order results for arbitrary three-dimensional bodies may
be obtained have been discussed by Eatock Taylor and Chau (1991). However, even
though significant advances have been made in the numerical techniques associated with
these approaches, they remain computationally intensive and require considerable amounts
of CPU and disk storage. For this reason, several investigators have considered idealized
geometries consisting of arrays of vertical, circular cylinders (either bottom-mounted or
floating), to approximate floating ocean structures. Chen and Molin (1990) developed an
efficient technique to examine the influence of the high-frequency interactions between TLP
columns on second-order wave loads where the first-order diffraction solution for the array
was obtained by the eigenfunction expansion approach of Linton and Evans (1990). Abul-
Azm and Williams (1989a, 1989b) have developed a computationally efficient semi-
analytical approximate method to study second-order interference effects in structural arrays
and have presented numerical results in regular waves for arrays of bottom-mounted,
surface-piercing and semi-immersed, truncated cylinders, respectively. The first-order
solution is obtained via the modified plane wave method (Mclver and Evans, 1984), and so
the technique is essentially a large spacing approximation. Second-order wave loads are
obtained utilizing the indirect approach due to Molin (1979). Williams ez al. (1990)
compared the results from this approximate approach with those from an exact second-
order solution for an array of surface-piercing cylinders based on a two-dimensional
Green's function approach. Very good agreement was found over the parameter range

where the large-spacing approximation was valid.

Ghalayini and Williams (1989, 1991) presented an exact second-order solution to
predict the hydrodynamic forces to second-order on bottom-mounted, surface-piercing,
vertical cylinders of arbitrary cross-section in the presence of regular waves. The constant
cross-sections of the array members are used to render the problem two-dimensional. An

efficient numerical technique was presented to treat the free-surface integral appearing in the
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second-order force formulation. This analysis was extended to deal with a bichromatic,

unidirectional incident wave field by Moubayed and Williams (1992b).

Previous work on the effect of wave directionality has been restricted to the study
of low-frequency wave loads and associated motions. Kim and Yue (1989) investigated
slowly-varying drift forces in short-crested irregular seas. Newman's approximation
(Newman, 1974) was used for the second-order force quadratic transfer function (QTF)
but the directional spreading was treated exactly. They found that the slowly-varying forces
on an axisymmetric body can be greatly amplified when the wave systems are incident
from opposing directions. Kim (1992) computed the complete second-order difference-
frequency force and moment QTFs for the ISSC TLP. His numerical results indicate that
the assumption of wave unidirectionality is not necessarily conservative as far as low-
frequency loading is concerned. Also, Kim (1993) obtained the second-harmonic vertical
wave loads on arrays of deep-draft cylinders in monochromatic uni- and multi-directional
waves. Arrays of circular bottom-mounted surface-piercing cylinders were used in the
computation of the second-order potential. The vertical loads were obtained by multiplying
the second-order pressure at the desired level on each of the cylinders by the corresponding
cross-sectional area. His observations were similar to those found for the difference-
frequency load QTFs for the ISSC TLP, namely that the exciting loads on multiple
columns are very sensitive to wave headings. The influence of wave directionality and the
role of the second-order velocity potential on low-frequency hydrodynamic forces has been
discussed by Eatock Taylor et al. (1988). Practical engineering approximations to the bi-
directional, quadratic second-order surge force transfer function were assessed. In
particular, it was shown that a simple superposition of directional wave components may
not yield reliable results at second-order. Maeda et al. (1986, 1988, 1992) have published a
series of papers on the effects of wave directionality on the low-frequency motions of

semi-submersible structures, and validated their theoretical approach through laboratory
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experiments. In their work the influence of the second-order velocity potential and second-
order structural motions were neglected. Nwogu and Isaacson (1991) presented the results
of both a theoretical and experimental investigation of the slow drift oscillations of a
moored barge in random multi-directional waves. The Newman approximation was used
for the second-order force quadratic transfer function and wave directionality was treated

by averaging the corresponding unidirectional QTFs.

Therefore, a review of the open literature reveals that, at the current time, there
exists no comprehensive solution for the calculation of the sum- and difference-frequency
hydrodynamic loads on arbitrary three-dimensional floating structures in bichromatic,
bidirectional waves. Furthermore, as suggested by Natvig (1994), a computationally
efficient two-dimensional solution for an array of bottom-mounted, surface-piercing
vertical cylinders will be analyzed as an approximation to the solution for deep-draft multi-

column structures.

10
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CHAPTER THREE

HYDRODYNAMIC LOADS ON DEEPWATER STRUCTURES IN
BICHROMATIC BIDIRECTIONAL WAVES

Consider an arbitrarily shaped ocean structure in deep water (Fig. 3.1). The
theoretical formulation of the wave-structure interaction problem is based on the
assumption of a homogeneous, ideal, incompressible, inviscid fluid. The irrotational
motion of the fluid may be described in terms of a velocity potential ¢(X,t), where X =
(x,y,z) and t denotes time. The potential ¢(X,t) and surface elevation 1(Xgs,t), where Xgs

= (x,y,0), are assumed expressible in a Stokes series, namely,

0Xt) = £ DX + €2 ¢D XKy +..., (3.1a)

NXrs,t)= € T'D (Xps,t) + €2 @ (Xps,t) +..., (3.1b)

where € is a small parameter of the order of the incident wave steepness.

If it is assumed that the bichromatic incident wave system may be represented by a

superposition of two monochromatic waves of amplitudes I'j with frequencies ;, and

incident direction B; j = 1, 2, then the time-dependency in all dynamic quantities may be

separated explicitly,

2
o Xt) = X, &N (X) e-ioy, (3.2a)
Re j=f !
2 2
oA Xn = %2 {d);,;(zg e+ @t + O (X) e-i(w- ot} §2t, (3.2b)
e j=1 k=1
11
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2
MWEes) o AP e, (3.39)

NAXFs;t) = gé{l"j}(&s) i@+ @t + T (XFs) e-itw; - ot} (3.3b)
AM() = ; §_m e-iof, (3.4a)
AD) = le,kZ{ Erei@rods Eo e o}, (3.4b)
a0 = JZ oV e-ioy, (3.52)
22 = E{Z{ @ el@ sy g - ei-on), (3.5b)

where 8@ is a constant (Stoker, 1957).

3.1 First-Order Potential

3.1.1 Boundary-Value Problem for First-Order Potential
The boundary-value problem for the first-order potential is given by
V2oh = 0 in the fluid domain, V, (3.6)

32 o

302 +gy = 0 on the mean free surface, Sg, 3.7)
o) .
rral Vihepn on the equilibrium structural surface, S,, (3.8)
13
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(1)
%— =0 as Z — - oo, (3.9)

where VO = & { A0+ Qx [z~ 1]}, (3.10)

g is the acceleration due to gravity, n = (nj,nz,n3) is the unit normal away from the
structure in its equilibrium position, A} and Q( are the first-order translation and
rotational motions of the structure, respectively, [ is the location of the center of gravity of

the structure at equilibrium, and [ is the position vector of any point on the body surface.

3.1.2 Decomposition of First-Order Potential
The total first-order potential may be decomposed into incident, scattered, and

radiated wave terms. Therefore, the total first-order potential is

o0 = o + o + ¢, (3.11)

The scattered component results from the interaction of the incident wave field with a
stationary body, while the radiated components arise from the prescribed harmonic
oscillation of the structure in an otherwise quiescent fluid. The radiated wave potential may
be further decomposed into components explicitly associated with the various translational

and rotational modes of oscillation, that is,

6
oY) = thg;. (3.12)
p=1

14
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The radiation potential components in Eq. (3.12) may be further decomposed into

2
M - M@ (1) et
¢Rp Re 21' gJ'p \Pjp e (3.13a)
J:
and
2
¢)) = (1) M .o
¢Rp+3 = z ajp ‘I’jp+3 e it (3.13b)
=1

for p = 1, 2, 3 and so the complex radiation potential amplitudes ‘P;L) p=12,.,6,j=1,
2, are associated with unit amplitude motions of the structure at frequency ; in the pth

mode of oscillation.

In addition, the scattered and radiated waves must satisfy a radiation condition at large

distances from the body. This is best expressed in terms of the individual potential

component amplitudes as
tim\y {2 _ ik} @D - a) = o, (3.14)
Yoo oy j i j

in which y = \lx2 +y2,k o is the incident wave number given by the positive real root of

the dispersion relation (njz = gk, and <I>J.(l” is the spatial component of the linear incident

wave potential given by
igfV | . o v sin B
(Dj(ll) - ~ j eko_‘z eikoj(x cos Bj +y sin B_‘), (3.15)
J

where 1'“}.” is the first-order amplitude of the jth incident wave component.

15
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Numerical solutions for (DJ%) and ‘PJ.( :)) may be obtained utilizing a boundary integral

method using a suitable Green's function and the appropriate structural boundary

conditions.

3.1.3 Solution of the BVP Using Source Distribution Method
For wave diffraction and radiation of an arbitrarily shaped structure, the jth
component of the first-order potential may be written as a distribution of sources of

unknown strength over the equilibrium body surface, i.e.,

[PX), ¥)X) 1= ! [0js (X) , 6jp (X)) ] G(0;,X:X) dS, (3.16)

A suitable expression for G(w;,X;X") = G(®j.X,y,z;x’,y',z') is given by the following

integral form:

00

G@X:X) =g PV %’l e+, Jo(ur) dy + 2mi v, €% &+2) Jo(vir), (3.172)
o =i
where
2
Vi = % (3.17b)
R=[(x-x)2+ (y-y)2 + (z-292]'"%, (3.17¢)
r= [(x-x92 + (y-y)2]"2 (3.17d)

In Eq. (3.17a), J, denotes the Bessel function of the first kind of zero order and PV
denotes the principal value of the integral (Wehausen J.V. and Laitone, E.V., 1960). Telste
and Noblesse (1986) derived expressions to obtain accurate values of the above Green's
function which are more computationally efficient than the above form. Their coded form to

compute the Green's function is used throughout the present study.

16
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Letting X, be a point on S, then Eq. (3.16) may be used to express the velocity

normal to the structure at X, as
q)(l) a\P(l)
[, ] Xo) = YXo) [ 035 Ko) , 65 (Xo) ]

J O}V, 6K 1% (@ X5:3) S, (3.18)

in which Y (X,) is the interior solid angle at X,,.. For smooth surfaces, ¥ (X,) has a value of
2.

The surface of the structure S, is now discretized into a total of M higher-order
surface elements each described in terms of N, nodes for a total of Nt nodes on the
structure. Next, the variation of the source distribution over each of these elements is
expressed in terms of its corresponding values at the nodes and appropriate shape
functions, N; (see Appendix A). For X, at the nth node ( X, = X» ), and after applying the

structural boundary condition, Eq. (3.8), the above expression becomes

Jdl) Jym

[, —;JL] = ¥X) (o} ol ]

Ne

2 [o-;ls)x“' ! o’.():)),# J- Nj T(mj X XY dS, (3.19)

m=1 i=l

Mk

+

where i* is the node number associated with the ith node of the mth element in the global

system.

Allowing n to vary from n = | to n = Ny results in a system of Nt x Nt linear

equations which can be solved for the unknown source distributions at the nodes, namely

[CTnpxng { Sis »Sip Iny =1 Ris ,Rjp Iy (3.20)

17
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where [ C ] is the coefficient matrix, { Sjs , Sjp } is the unknown source distribution
matrix (scattered and radiation components), and { R;s , Rjp } is the corresponding right-

hand side. The coefficient matrix [ C ] is defined by

Cnm— 2 i+ J N; E_(my ;X') dS + dym Y(X )- (3.21)

where 0 is the Kronecker delta.

The integrals in Eq. (3.21) and in the discretized form of Egq. (3.16) contain
singularities of order O(1/R?) and O(1/R), respectively, when the node n is on element m.
The order of these singularities may be reduced by performing the integrations in a polar

coordinate system. Details of this transformation are given in Appendix B.

Once the source strength values at the nodes are computed, the velocity potential at
any point X, in the fluid domain may be determined from the discretized version of Eq.

(3.16), namely

8} (1) '
[®js @ 1= 2 Z [0S, + O\pn 1 j N; G(o;X ;X)) dS.  (3.22)
AS

m

The velocity gradient at any point X, [g,(sI , (pl)] -[V<I>J(sl) thj(pl ) ], strictly

inside the fluid domain is then given by
M

(1) ) ,
(Vs V¥, 1= 2 2 [55;e » Oipia ] I N; V G(0;.X ;X)) dS,
AS

(3.23a)

18
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whereas for X, on the boundary S,, the velocity gradient is given by

() M ,
(Vs V¥ 1= 2 2 (O8> Ol ] f N; V G(w;X ;X)) dS
AS

m

+¥X) [ofg ,ol) 1n, (3.23b)

where n is the unit normal vector at point X,.

For the most part, ocean structures have geometrical symmetry dividing the
structure into two, four or eight similar parts. The existence of this geometrical symmetry
may be used to reduce the computational effort even for cases when the wave system does

not possess symmetry. Details of this procedure are given in Appendix C.
3.2 Second-Order Potential

3.2.1 Boundary-Value Problem for Second-Order Potential

The second-order problem, obtained by gathering terms of O(€2), may be written as

V3@ =0 in the fluid domain, V,  (3.24)
a2¢(2) a¢(2) 1 90f 226" 2o 3

az T8 Tga { a tEy } -5 (Vo2 onSp,  (3.25)
and

(2 R(2)

A - vorn+ 10 (B2 o)

~n° {@® + QO x [r -1g]) * V} Vo

+ QM xp) * (VO - Vo)] onS,  (3.26)
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where

Ve = S {a® + 9O x [t -1q] }, (3.27)

and R®@ is a second-order matrix whose entries are products of first-order rotational

displacements, namely:

Q%+ Q%) 0 0
R® =-| —20,Q, @+Q)h 0 . (3.28)
-20,Q3 -20,Q; @ + Q)

It should be noted that the form of R(?) depends on the sequence of angular motions.
In the present case, the sequence roll-pitch-yaw has been used. Finally, a suitable radiation

condition must be imposed on ¢(2), to ensure the correct behavior of the solution at large

distances from the structure,
3.2.2 Decomposition of the Second-Order Potential

Similar to the first-order potential, the second-order potential may also be

decomposed into incident, scattered and radiated wave components, thus

0@ = ¢ + ¢2 + ¢ (3.29)
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The spatial variation of the second-order incident potential is given by

r+0
[_I___.L.] e (c'2) il k) (xy), (3.30a)

where

1, =80Tk {- 1% 2kojkeoy [cos(Bi-By) 1
jk == 20 * £ ’
; V- X

(3.30b)

and

2
kj = ( koj cos Bj, koj sin Bj), Ui=—(9j}g——m andlci=lgjikkl.

Unlike the first-order problem, this decomposition is not unique. It is convenient to

let the second-order scattered potential, ¢(§), be associated with the second-order incident

wave field and also all forcing due to quadratic contributions of first-order quantities both

on the free-surface and on the structural surface.

Following the decomposition defined in Eq. (3.29), the boundary-value problem for

the second-order scattered potential may be written as
V@ =0 in the fluid domain, V, (3.31)

020 3% 19D 5 fa® 3o
o T8z Tg o a‘{ %2 T8 az}

240 2 @
-2 wemy2 - ( ¢ L) onSg (3.32)
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a¢§2) 1 R®
55 = 30 (B ) ~n e {(@W + QO x r-ge) ¢ ¥} Vo

)
+ (QD x p) * (V) - V) - g—— on S,. (3.33)

The second-order radiated potential may be expressed as

2 2
oD X = > Y {\P;Q(_) i@ o0t 4 Y- (X) el o } (3.34)

j=l k=1

Then, the boundary-value problem for the second-order radiation potential in the pth mode

(p=1,2, .., 6) may be written as

vz‘yi =0 in the fluid domain, V, (3.35)
b d
2+ b g

~(@taY ¥ + g —&P- =0 on the mean free surface, Sf, (3.36)
)

o =i@togn on So, (3.37)
lim 7y [< - k) ¥i= 0. (3.38)
Y e aY

In Eq. (3.38), lﬁ is the sum- difference-frequency wave number given by the dispersion

relation (w; + wy)l=¢g )\g and {ng4, ns, ng} =n X [r - IG]-
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3.3 Linear Equation of Motion for Rigid Structures

In response to wave excitation, the structure experiences small amplitude
translations given by A(1) in surge, sway and heave, and small rotations about the center of
gravity of the structure of Q1 in roll, pitch and yaw. Because of the linearity of the
problem, the analysis for a monochromatic wave train is presented below. For simplicity,
all superscripts denoting first-order, as well as all subscripts denoting wave component are

dropped in this section.

Assuming that the structural response has the same time dependency as the exciting
loads, the equation of motion may be described in terms of the unknown structural
displacements. In general, the solution of the equation of motion requires the calculation of
the load vector acting on the structure as well as the properties of the structural system (i.e.,

the mass, damping and stiffness matrices).

3.3.1 Exciting Loads
Once the scattered and radiated potential components on the structure have been
calculated, various quantities of engineering interest may be determined. The hydrodynamic

pressure may be calculated from the linearized form of Bernoulli's equation according to
P=piond, (3.39)

where p(x,y,z,t) = Re[P(X,y,z) ei®] and p is the fluid density. This pressure can be
broken down into an incident wave component, a scattered wave component (due to the
disturbance associated with waves impinging on a fixed structure), and a radiated wave
component (due to the oscillation of the structure in otherwise calm water). These first two

pressure components (incident and scattered) may be integrated over the wetted surface of
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the structure to give the complex amplitude of the exciting loads at each of the 6 modes

(surge, sway, heave, roll, pitch and yaw), namely

1:5 = I (P1 + Ps) n, dS =-pi(oJ- (@ + ®s) np, dS. (3.40)
S So

3.3.2 Added Mass and Damping Coefficients
In a similar manner, the hydrodynamic reaction loads may be defined in terms of

the oscillation-induced pressures experienced by the structure,

FR = J PR np dS = -pimj ®g n, dS (3.41a)
SO SO
3
= -pimj Z [ W 8 + ¥ggy®q 1 mp dS. (3.41b)
s, !

[+

For convenience, the above expression may also be written as

6
R R
F, = 2 ER, (3.42)

g=1
where
ng = -ping J‘\PRq np d§ q=1,2,3; p=12,..,6 (3.43a)

SO
= -piwogs J‘I’Rq np dS q=4,56 p=1,2,..,6. (3.43b)
SO
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Real symmetric added mass and radiation damping matrices A and B with entries Apg
and Bjq are now defined as those components of the reaction force in phase with the

acceleration and velocity of the structure, respectively. Thus, we have

Fr, = [02 Ay + i0B] &, q=1,2,3;p=1,2,..,6 (3.44)
Fris = [02 Apgus + i 0Bpgu] o 9=1,2,3p=12,..,6 (3.45)

3.3.3 Mass and Stiffness Matrices

Consider a rigid structure whose center of gravity G relative to O is given by 1g =
[XG. Y. zg]. If the mooring line or tendon forces and moments are represented by the six-
component vector T and the fluid loading (both hydrodynamic and hydrostatic) by P, then
the rigid body equations of motion of the structure, referred to the mass center G, may be

written as
MX =T + FE + F}, (3.46)

where [ x]1=[§, o] and M is the mass matrix, given by

m 0 0 0 0 0 i
0 m 0 0 0 0
0 0 m 0 0
M=1o 0 0 L Ty I, (3.47)
0 0 0 ~Iyy Iy Iy,
K 0 0 e e I |

Here m is the structural mass; Iy, lyy, and I, are its moments of inertia, and Iy, Ix;, and

Iy, are the products of inertia relative to axes through G parallel to the coordinate axes.
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The fluid exerts a pressure P on the structure; this pressure consists of a hydrostatic
component P, and a hydrodynamic component P, so that the total pressure may be written

as
P="P, + P. (3.48)

The hydrostatic pressure gives rise to a steady buoyancy force, which determines the static
equilibrium state of the structure, and also to oscillatory forces and moments caused by
changes in the submerged volume of the structure as it heaves, rolls, and pitches (note that
surge, sway, and yaw have a zero contribution to this component). The oscillatory load due

to hydrostatic effects, P,, may be written as

Fp = - J P' n, dS, (3.49)
AS

in which AS represents the change in submerged area S from the static equilibrium position

(i.e., in calm water). The hydrostatic load vector may be written as

E, =-1X, (3.50)
where
0 O 0 0 0 0 T
0 0 0 0 0 0
0 O 0loo 01 - Qo 0
1 =pg
0 0 oo V(zg - zg) + 0lp2 - 011 Op1 -V(xB - xg)
0 0 -oyp - Oy V(zp-zg) + 029 -V(¥B- Yo)
[ 00 o 0 0 o |
(3.51)
26
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in which p is the fluid density, g the acceleration due to gravity, V the displacement volume

of the structure, and (xg,yg,zp) = I is the location, B, of the structure center of buoyancy.
The quantities 0lgo, 0L10, and 0lp; are the water plane area and first moments of the water

plane area about G, respectively, that is,

Olgp = J' dA, (3.52a)
A

oo = J (x-xg) dA, (3.52b)
A

Oy = _[ (y-yo) dA. (3.52¢)
A

The quantities o1, 020, and 0l are the product and second moments of water plane area,

respectively, and are defined by

o = j (x-xg) (Y -yg) dA, (3.53a)
A

020 = _[ (X - Xg)? dA, (3.53b)
A

Og2 = J (y - yg)? dA. (3.53c)
A

The hydrodynamic pressure component P' can be broken down into an incident
wave component, Pj; a component due to wave scattering by a fixed structure, Ps; and a
component due to the waves radiated by the structure in otherwise calm water, Pg. Thus,

we get
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P'=P; + Pg + PRr. (3.54)

Integrating the first two components over the immersed surface of the structure yields the

exciting loads (forces and moments about G in the pth mode), P‘; Similarly, integrating the

radiated pressure component over S, results in the hydrodynamic reaction loads, P*;, which

may be decomposed into components in phase with the acceleration and velocity of the
structure to define the added mass and radiation damping matrices A and B, respectively.

Thus the fluid loading vector may finally be written as

E=Fg - Ax -Bx-1x (3.55)
where Fg is the vector of the exciting forces and moments about G, A and B are the added
mass and radiation damping matrices and x is the vector containing the structural

translational and rotational displacements at rg, i.e., [x]1=[§, a].

The final contribution to the equations of motion comes from the mooring forces
and moments represented by the vector T. In estimatirg the entries of T, the mooring cables
will be assumed weightless, taut, and of constant stiffness. The model proposed herein
includes both "elastic” effects due to linear extension of the cables and also "pendulum"
effects due to the static pre-tension in the cable under lateral displacement. The vector T

may be expressed in terms of a cable stiffness matrix K so that
T=-Kx (3.56)

Expressions for the entries of the matrix K are given in Appendix D.
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The complete equation of motion for the structure is obtained by equating the
hydrodynamic loading components (excitations and reactions), hydrostatic loads and

mooring terms to the product of the mass matrix and the acceleration vector to yield

Mx =Fg-Ax-Bx-Jx-Kx (3.57a)
or
M+ A x+Bx+(J+ K)x = Fg, (3.57b)

where Fg is the exciting load vector, evaluated about the center of mass G.

3.4 First- and Second-Order Hydrodynamic Loads

3.4.1 Derivation
Similar to the expansion of the velocity potential and free-surface elevation, the
hydrodynamic loads on the structure in a direction aligned with the pth mode may be

expressed as

FO = ¢ F;”(t) + g2 Fff) t +... (3.58)

For structures with vertical walls at the still-water level, the diffracted

hydrodynamic loads in the pth mode at first- and second-order are given by

p) (1) H
) = j [_S?i__a*_t?;s_l ]np s, (3.59)

So
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a(¢(2) + ¢ (,_,2 ))

So

+ (a0 + Q0 % [t-10)) * 3 (o] n, as

+ % pg j (mM)? n, dL + Q) x Fé”, (3.60)
L

(1]

in which L, is the water line contour around the structure and nr(” is the spatial component

of the first-order relative wave elevation defined by

NP = q® - AP + (16 x QD) * (00,1). (3.61)

An examination of the expressions for the second-order diffraction-induced loads
given by Eq. (3.60) reveals that every component except one may be determined from the
known second-order incident potential, or from first-order quantities alone. The one
exception is the contribution due explicitly to the second-order scattered potential which

may be written as

2 2

F‘Szp) A kEi {FS; i@+ ot 4+ R el o } (3.62a)
=1 k=

where

Fg, = -ip (@j£ay J ogn ) ds. (3.62b)

So
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3.4.2 Second-Order Loads Due to Second-Order Potential
The method utilized to calculate the second-order hydrodynamic loading components

explicitly due to the second-order scattered potential in Eq. (3.64), does not involve the

explicit calculation of this potential. Instead, the loading components due to <I>§ are obtained
by solving a series of associated linearized radiation problems corresponding to the
prescribed oscillation of the structure at the sum-frequency , (®;j + wg) , or difference-
frequency, (wj - @), of interest. The solutions of these problems are linked to the required

loading components through Green’s second identity (Lighthill, 1979; Molin, 1979).

Let us define the domain V* bounded by the surface S*, consisting of Sy, SE, Se,

and a horizontal boundary Sg, where the vertical scattered and radiated velocities may be

taken as zero (see Fig. 3.1). Then, applying Green’s second identity to <I)§ and ‘I‘: over the

region V* gives

_[ [ @t % \If‘a‘pi] ds = I [ ®tvee® - wivagt] dav 3.63
S on ~ "p on - sY XpT TpV s . (3.63)
S* v*

Since <D§ and d)j both satisfy Laplace’s equation, the right-hand side of Eq. (3.63) is

zero. By imposing the boundary conditions on Sg and S, Eq. (3.63) may be written as
a\Pt 1 +
j ®§?FR s = j‘l’i z0°S [r-16)

—p ot {EM + oM x (116D ¥} YO0

1 . | o * E)CI)Ii
FAE® x D) C @O - YoM - L] as

o¥ o dt
- | Letge- vt i) s, (3.64)

S,.,USF
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in which the matrices S * are defined by the relationship.

2

2
3RO . o
2 IR 3.65)
2
and U1 s defined by Y) = 2 {U, D e-iont}, where V(1 is given by Eq. (3.10). In
€ k=1

Eq. (3.64), the symbol * denotes the complex conjugate which is to be applied only to the

difference-frequency component.

The quantity on the left-hand side of Eq. (3.64) is now recognized as being related to

the pth component of the second-order load on the structure due to <I)§ , that is, from

Egs. (3.62) and (3.37),

. N L0V
F§ =-ip@tay | ®n, dS=p f Of—LP- dS p=1,2,..6.  (3.66)
Sm S

Also the integral over Sg in Eq. (3.64) may be simplified, utilizing the boundary condition
for ‘I’: on that surface and the complex form of Eq. (3.32), to give

o

i(—mlg“—“’k—) J. Qt wrds, 3.67)
Sf

in which

Qi=%(q§ +aqct), (3.682)

where * denotes complex conjugate. Again, it is noted that the conjugate operator is to be

applied only in the difference-frequency case. In Eq. (3.68), we have

i M 32 b
s _ 10k cap( 299 i . M. e
%G = £ 35 Py ((ﬂj % 83 )ilcokvtbj Vol (3.68b)
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Solving the linearized boundary value problems at each sum / difference frequency,
yields the appropriate radiation potentials for use in calculating the second-order

hydrodynamic loads on the structure.

3.4.3 Transfer Functions

The first and second-order hydrodynamic loads may be expressed in terms of linear
and quadratic load transfer functions. The first-order wave excitation loads on the structure
in the pth mode (surge, sway,...,yaw) are proportional to the wave amplitudes and may be

written as
2
My = _ . B:) e-iot
Fom = El, I G(a;, By) e-iot, (3.69)

where Gp(mj, B;) is the appropriate linear transfer function. The analogous expression for

the second-order load in the pth mode is

| —

2
2 {n H (0, @y; By, Br) eyt

2
F(z)(t)
P e < j=1 k=1

Zi

+ Tj T H(0;, o Bj, By eiteproor }, (3.70)

where the Hg (0, 0; P, Px) are the quadratic sum and difference load transfer functions

in bidirectional waves.
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3.5 Asymptotic Forms of the First-Order Potentials

A separation of variables solution of the governing Laplace equation in cylindrical

polar coordinates (r,0,z) yields the following analytical form for the first-order scattered

potential, which is consistent with the free-surface, sea-bed and radiation boundary

conditions,

(s = ekoi® z € { Angj €05 B + By; sin n } HY (k) eior, (3.71)
Re n=o

where €, = 1 and €, = 2 for n 2 1, the Apoj and Byj are complex coefficients, and H(;)

denotes the Hankel function of the first kind of order n. The first-order incident potential

may be written in polar coordinates as

¢gll) - - 1_25 ekojz eikojr cos(e-Bj) e-imjt (3.72a)
Re J
ioT: ) .
= - —%—1 ekojz 2 enin Jn (k ;1) cos n(6-P;) e-iwjt, (3.72b)
Re g n=o0

where J;, denotes the Bessel function of the first kind of order n.

A separation of variables solution of Laplace's equation in cylindrical coordinates,

which is consistent with the boundary conditions for <I>Rp , is given by

(- -]

M koj Pj Pig;
‘}’jp R—_e ; el (ke oj% { D  cosnb + E sin n® } (3.73)

since at large distances, only a propagating mode of the radiation potential is needed.
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The form of this radiation potential is also valid for the assisting radiation potential
with proper substitution of the wave frequency and wavenumber at the sum- or difference-

frequency.
3.6 The Free-Surface Integral

The numerical evaluation of the free-surface integral appearing in Eq. (3.67)
constitutes the major computational effort in obtaining the second-order load component
F(f,). It has been shown analytically (Eatock Taylor and Hung, 1987; Abul-Azm and
Williams, 1988) that at large radial distances r from the structure this integral exhibits
oscillatory behavior, decaying as r -1/2. For an axisymmetric structure, this integral may
be expressed in polar coordinates (r,8), the angular-integration carried out explicitly, and
the remaining r-integral evaluated by a suitable quadrature rule (Eatock Taylor and Hung,

1987; Abul-Azm and Williams, 1988; Moubayed and Williams, 1992a).

However, for an arbitrarily shaped structure, the angular and radial dependency in
the free-surface integral will not be separable. Therefore, in the present work, the method
of Moubayed and Williams(1992b) for cylinders of arbitrary cross-section in uni-
directional, bichromatic waves will be extended to deal with the bidirectional wave case.
The free-surface integral is divided into two parts, an interior, near-field region S,
encompassing the structure and bounded by a fictitious circular boundary Cg situated at r =

R and an exterior, far-field region Sf, extending from r = R to infinity. Thus, the free-

surface integral contribution Ir may be written as

IF*p = JQ:,(x,y) ds + JQ;(x,y) ds. (3.74)

Sg

2

S
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The boundary Cg is chosen sufficiently far from the structure that analytical
asymptotic forms for the potentials are valid for r 2 R. The asymptotic forms of the
potentials may now be substituted into the free-surface integral on Sg, and the 6-
integrations evaluated analytically. The remaining r-integrand may be integrated explicitly in
terms of Fresnel functions to yield an explicit form for the integral over the exterior free-

surface region.

3.6.1 Numerical Integration on Sg;

The interior free-surface integral over the domain Sk, which extends tor = R and

contains the structure, is evaluated numerically. The domain Sg, is subdivided into a large

number of triangular or quadrilateral elements. The number of nodes utilized to represent
each element, N, depends on the order of variation desired within the element for the
different dynamic quantities such as velocity potential and water particle velocities. The
general element is first mapped onto a right triangular element or a square element, then the
quantity of interest on each element is expressed in terms of shape functions N; and the

corresponding nodal values [ J; as

Ne

(07 .0 . ¥ 1vH) =; N [0, o). ¥ 1, (3.752)
Ne

[@) @) (Fx 1 (V) =2{ Ni [ @D, (@D (¥ T, (3.75b)
Ne

@)y (B)y . (Fp)y 1) =2l Ni L@ D)y @D (¥ (3.750)
Ne

[@5)e (@) (¥ 1 0) =2]« Ni [(@ D)z @), . (¥, I (3.750)
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In order to evaluate the quantity Qf (X,y) on an element, the second partial derivative
with respect to z of the potentials is required. For the incident potential it may be obtained
analytically, while for the scattered and radiation components of the potential it may be

obtained through application of the governing Laplace equation as

(1) (1) )]
8_291'_5_= . O*P;s + 02D }
dz2 ox? dy?
N 5 Ne a
Nj N
=-{ 2{ o (XDdi + s 3y (@i }. (3.76a)
and
a4 PO L 44 azqfﬁ'p’}
0z2 T oxz *t dy?
N Ne
oN; aN.
{; o D+ o (CSROW }. (3.76a)

The partial derivatives with respect to the global (x,y) coordinates are related to the

partial derivatives with respect to the local (v,£) coordinates through the Jacobian matrix

(see Appendix A).

For convenience, in the subsequent discussion, the subscript p, which is associated

with the pth mode, will be dropped from the expressions, and only the * will be written.
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Dividing the integration domain Sg, into M’ elements yields

+ +
Ig, = IQ, (x,y) dS

Sk
Mo 1
+
= Jl I Q" &) 13,1 dv d¢ for triangular elements (3.77a)
=l o o
and
+ i
Ig, = Q, xy) dS
Sk
Mo g
+
= Z J J Q" Ewv) | 11n| dv d§ for quadrilateral elements,  (3.77b)
=l 4
in which
N
: ipg(wj £ wy) - —
eV = —m— Z. (1 {dq,.k@,v) +dg"E.v) } : (3.78)

+
The integration of the function Q' (€,v) over an element on S, is carried out

utilizing Gaussian quadrature.
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3.6.2 Analytical Integration on Sg,
Choosing the boundary Cp sufficiently far from the structure, the asymptotic forms

of the incident, scattered, and radiated potentials on the free-suface (z=0) will be valid on

Sk,, thus using polar coordinates, (r,0),

‘1’311’ ~ Z €n Inj cos n(6-B;) -2 cos (kojr-00p), (3.79)
n=0 kojr

(D(.‘S) + @) ~ 2 €n { Anoj cOs n@ + Bp,; sin n } 2 itk @n), (3.80)
! ! n=0 Ttkojr

+ i + + 2 i)
| Sl en{ D, cosn® + E. sinn@ } ~ gl(Aor-n) (3.81)
n=0 1!7\.;!‘

in which I =i" and ®, = (2n + 1)n/4. Utilizing the orthogonality properties of the

trigonometric functions, the potential coefficients Apoj, Broj, D::), and E:“o for n 2 0 may

be expressed in terms of the values of the radiated and scattered potentials on Cg according

to
2z
An = /ko,R eIk oR-00) [q>(jrs> (R,e)+q>§;g (R,8)] cos n® de, (3.82)
8n 5
2r
Bnoj = A / KoiR it R [ 2 (R.8) + @ (R0)] sin n6 d, (3.83)
8n 5
2n
AS *
D* = R gihaRon j ¥*(R,0) cos n® do, (3.84)
dm 5
2n
AL ok
El;‘; = 8;R e ioR-0y) J- ¥*(R,0) sin n6 de. (3.85)
T
0
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After substitution of the asymptotic forms given by Egs. (3.82)-(3.85) into Eq.
(3.67) for r > R, the 6-integrations may be evaluated analytically. The integrand also
contains oscillatory components of the form r-1/2 exp{ikfr} and r -2 exp {i (kf *koj £
kok) r }, these terms may be integrated explicitly in terms of Fresnel sine and cosine

functions C(x) and S(x), defined by Abramowitz and Stegun (1972).

After dropping the common subscript ‘o' on the potential coefficients for

convenience, and maintaining a format suitable for the more general case of finite water

depth, the final explicit form for the integral over the exterior region S, is

1 1
I§ = -8p(a+awy
2 P J '\lko_]kok —\/)bét

[1(ct % kojkok (@£ @0)

[% Ao, I, D 71205200 + 2 2 {(Ap,- Dpsq + Bpug Ep)
p=0 g=l

I, cos qf ei0gHop+op.g) + [(APJrqj in + By E§+q) cos pB,

+ + + ) . * ;

+ [(Aq DE - By EL) cos (p+q)B,

+ (qu Dli, + Ap, E:) sin (p+q)Bk] Ipiq €71(@q+0pt0p:g) }]

+ .
L (4o e [EERR )

VAE + Koj * Kok
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+i(3- S('\/z(;”‘f”‘;’fk°")R )}

1 * : -
+3 (cf £ koj kok (@] % @) [% A, I, D e-i2wgiay)

-] o0

+ Z Z {(Apj Dig + Bpq Ex) I, c0s qB, €itt0q-p-wpuq)

p=0 g=I
+ [ (aq DE - By EL) cos (pra)f,
+ (By Dt + Ap E2) sin (p+q)B, | Iiuq, €00-0pt0pg)
+ [(BP"‘Qj D - By Dpiq + AqEprq = Apiq E3) sin pB,

+ (qu Epyq + Apsg; D}) cos pB] Ip, €it-06t0=0gp) } ]

1 1 2(Ag + koj ¥ kok)R
5-C
Vl§+x,~$ Kk {(2 (V Tt ))

(45 TR )

+ % (ci + koj kok (@; % ©%)) [ % AsL, D eFiw,

o0 -]

+ 20 2 { A51g Dhqcos g eorraran

p=0 g=1

+ Ap, Ipig Eg sin (pq)B, eiG0p+0pq00)
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+ [(a505 - By E) cos 0
+ By Df sin (p+q)Bj] Ip+q, €1(-0pF0q+0pr)
+ [(A&Eﬁ,;q — Bg, Djug) sin pB; + Bg, Epuq cOs ij] Ip, €i(F0q+0y=0peq)

+ [(B;ﬂk Dg ~ Apiq, E‘f) sin pp; + Ap+q, D: cos nBj] Ip, €i(-0g+0p¥0peq)

1
\/A'c:)t - koj * kok

+ Bpig Iy Eb cos mp, eit+0g-0p30pig) }]

T .
{(§-cq2e=toziat )

(- sy )

1

+ 1 + .
+ 5 Cy - ['2‘ A;k Ioj D, e-i(20.ta,)

+ Z Z {(Iqj Dﬁﬂ cos qB; + Ipsg; Ef, sin (p+q)[3j) Ap, eriG0s+0pqHag)
p=0 q=]

+ [(A&Dﬁ - Bg, Eﬁ) Ipeg;cos (p+@)B, + (A&Eﬁﬁ, - Bg, Dip) Ip;sin pB,
+ (Ip+qj Dg Sin (p+q) Bj + ij Eg‘*ﬂ coS Pﬁj) Bc;k ] e-i(:tmq+mp+q+mp)
* [(Ip,- D sinpB, + Iy, Ef cos gB,) Bp.q,
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+ Apig (Dqt cos pp; - Eif sin pBJ.) ij] -i(@gEWpq+0p) } ]

1 {(%_C(\/z(xﬁk:iikok)k )

'\/loi+ koj £ kok

+i(%_s('\/2(7~§+kiikok)R )}

+ G [% Aq; Ag, D e-i205tw;)

-] o0

+ 2 Z {(Ap+qj D; + Bg Epuq) Ap, €i(0q+0pugtey)

p=0 g=!
+ (A;*'qk quDg + Bl:ﬁh BPj D‘? + Bl:*'CIk quq

— By Aprg, E}) e-i@gtpigtay) 4 [(Ap,. Diq + Bpg; E}) Ag,

+ (BP"’QjD:It’ - By D§+q + APjElj):*‘q =~ Apig EiP) BC;‘] e—i(—.tmq+mm+mp)]

* .
1 {(%_C(\/2(10+k;Jikok)R )

VAZ + Koj £ Kok

£ .
+i(%_s(\/2(lo+k:ikok)R N, (3.862)

where

Cf = (0jx@)kojkok and C5 = Cf 5 (@; £ @) koj kok.
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3.7 The Double Gradient Body Integral

When the ocean structure being analyzed undergoes motion, the expression for the
second-order hydrodynamic loads contains terms requiring the computation of double
gradients of the potential which are integrated over the mean position of the structure, S,
Since the potentials satisfy the Laplace equation, a transformation utilizing Stokes' theorem
may be performed to change the integral into a combination of line integrals and surface
integrals involving only first derivatives of the velocity potential. From Eq. (3.64), the term
requiring the computation of the double gradient may be modified as shown by Matsui ez

al. (1992) to take the form:

+
jkp

= J' ‘P:[ n' {(Aj(l) + Qj(l) X [I-IG])‘Z} Y(Dk“)‘] ds

So

B

= f‘i’i[n-{xg; "V} Ve,m°] ds

So

e t. *y (1) e t . *
J L@ ) (¥ w000 (- ved (o - vo")
So

- (R x ) VOM"] ds J ¥ xi)x Yo 0« d), (3.87)
Cy
where gc_(GlJ) = (Qj(l) + %(1) X [r-1G], and the last term is the integral over the closed

path defined by the intersection of the mean free-surface and the mean structural surface.
This form is preferred since it requires only first derivatives of the first-order

potential and assisting radiated potential which may be obtained directly from the source

distribution approach used to solve the first-order problem.
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CHAPTER FOUR

IMPLEMENTING NUMERICAL COMPUTATION OF SECOND-ORDER SUM-
AND DIFFERENCE-FREQUENCY LOADS ON ISSC TLP IN BICHROMATIC
BIDIRECTIONAL WAVES

The theory developed in Chapter Three was coded utilizing quadratic elements
and taking advantage of the triple symmetry exhibited by typical ocean structures. The
ISSC TLP (Eatock Taylor and Jeffreys, 1986) will be used to illustrate the solution
methodology and demonstrate the effect of wave directionality and first-order body
motions on the second-order sum- and difference-frequency hydrodynamic loads.
However, before results for the sum- and difference-frequency loads on the ISSC TLP are
presented, the convergence of the first-order solution is addressed. As stated earlier, the
accurate computation of the second-order loads is directly related to the accuracy of the
first-order solution. Since the two dimensional solution for the array of cylinders is much
more computationally efficient than the solution for an arbitrarily-shaped three-
dimensional structure, the convergence of the free-surface integral will not be discussed
in this chapter, rather it will be addressed in Chapter Six, after the derivation of the

solution for the array of cylinders is presented in the next chapter.

4.1 Convergence of First-Order Potentials

In this section, the numerical convergence of the diffraction and radiation
problems is investigated. A truncated circular cylinder of draft b =30 m. and radius a =
10 m. situated in deep water is used to show the convergence of the solution. The
dimensions of this cylinder are chosen in such a way that they correspond to a typical

column of a TLP. One of the biggest problems in showing numerical convergence on
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three-dimensional structures is the lack of a simple way to present the velocity potentials
on the structural surface for different numbers of elements. One could conceivably argue
that convergence of the first-order loads would be a good indicator of the convergence of
the velocity potential. However, the final computed values for the loads, which are
obtained through integration of the velocity potentials, may be the result of error
cancellations leading to false convergence estimates. For this reason, the convergence test
results are presented in terms of the velocity potentials themselves, along four vertical

lines on the side of the cylinder corresponding to x =y and x = -y (see Fig. 4.1).

Figure 4.2 shows the different meshes (1 - 8) used for the convergence test. In all
cases, the corner nodes were assumed to have unit normals in the directions bisecting the
normals of each of the elements (i.e., in the same direction of an equivalent rounded
element) (Eatock Taylor and Teng, 1993). Tables 4.1 show the variation at selected points
of the scattering potential (with an incident wave angle of 30°), and the surge radiation
potential with structure discretization. A typical wave frequency ® = 1.0 rad/sec was
used. Also shown in the tables are the relative cpu times required to obtain the solution
with each of the different cylinder discretizations. As can be seen, the computational
effort increases greatly with the number of nodes used to discretize the structure. It can
also be seen that there are two factors that affect the convergence of the solution. The
first is the distance between the nodes used to describe the structure geometry, and the
second is the number of Gauss points used to carry out the integrations within each of the
elements. From the results in Tables 4.1, it is seen that Mesh 6 is adequate for the
frequency of interest. Also, 4 x 4 Gaussian integration results in accurate values for the
velocity potentials. Aside from the accuracy issue, it should be noted that, as expected,
the potentials for the surge radiation problem are equal (or opposite) at points located
across the x- and y-axes. This confirms the validity of the solution obtained utilizing

symmetry considerations.
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Fig. 4.1 Distribution of points to check convergence of velocity potentials. There are

three sets of points corresponding to 6 =459, 1359, 2159, and 3159, at three different
levels: z=0, z=-b/2, and z=-b.
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Fig. 4.2 Element distribution on one eighth-model of circular cylinder of radius a
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Table 4.1a Convergence of complex surge radiated potential and scattered potential at different points on a circular cylinder with
radius a= 10 m, and draft b=30m. for ® = 1.0 rad/sec and B =30° with element/node distribution and number of Gauss points used
for the integration. Also shown are relative cpu times required.

Num. of [Num. of

Mesh Num. of |Normalized : : . : : :
elements| nodes |Integ. Pts| cputime | OINt1 Point 2 Point 3 Point 4 Point 5 Point 6
1 2 11 4x4 1.0 (-9.792, 5.190) | (-2.091, 3.775) (-0.288, 1.242) (9.792,-5.190) ( 2.091,-3.775) ( 0.288,-1.242)
(-0.528, 8926) | (-0.174, 1.929) | (-0216, 0258) | (-4434.-2384) | (-0.964,-0553) | (-0.143, 0.007)
2 4 21 4x4 32 (-9.714, 5.175) | (-2.085, 4.119) (-0.296, 1.248) (9.714,-5.175) ( 2.085,4.119) ( 0.296,-1.248)
(-0444, 8407) § (-0.121, 1.806) (-0.174, 0.294) (4.394,-2228) | (-0.946,-0475) | (-0.118, 0.048)
3 8 33 4x4 82 (-9.826, 5.203) | (-2.110, 4.166) (-0.299, 1.241) ( 9.826,-5.203) ( 2.110, -4.166 ) (0299,-1.241)
(-0455, 8431) | (-0.122, 1.810) | (-0.175, 0293) | (4421,-2231) | (-0952,-0474) | (0119, 0.048)
a 8 3 ax4 83 | (-9862,5198) | (-2126.4.153) | (-0336, 1.661) | ( 9.862,-5.198) | ( 2.126,4.153) | ( 0.336,-1.661)
(-0453, 8368) | (-0.112, 1.806) (-0.146, 0.299) (-4.407,-2.207) (-0.951,-0474) | (-0.144, 0.008)
5 9 1 a4 90 | (9953,5203) | (-2.142,4215) | (-0330, 1479) | (9953.5203) | (2.142,4215) | (0330,-1.479)
(-0460, 8.503) | (-0.119, 1.827) (-0.156, 0.295) (-4.427,-2244) (-0.956,-0481) | (-0.142, 0.013)
6 12 49 4x4 17.7 (-9.860, 5.218) | (-2.125, 4.146) (-0.314, 1.480) (9.860,-5.218) | ( 2.125,4.146) ( 0314,-1.480)
(-0454, 8352) | (-0.111, 1.805) (-0.162, 0.299) (-4.410,-2204) | (-0.950,-0470) | (-0.126, 0.037)
7 24 85 4x4 56.5 (-9.878, 5.221) | (-2.129, 4.151) (-0.315, 1.467) ( 9.878,-5.221) ( 2.129,-4.151) ( 0315,-1.467)
(-0457, 8360) { (-0.111, 1.807) (-0.162, 0.299) (4413 ,-2204) (-0.951,-0470) { (-0.126, 0.036)
8 40 141 4x4 162.2 (9877, 5.223) (-2.130, 4.152) (-0.310, 1.463) ( 9.877,-5.223) ( 2.130,-4.152) ( 0.310,-1.463)
(-0456, 8.347) | (-0.110, 1.806) (-0.164, 0.299) (-4411,-2.200) (-0.950,-0470) | (-0.123, 0.042)
6 12 49 2x2 10.9 (-9934, 5.243) | (-2.137, 4.175) (-0.314, 1.503) (9.934,-5243) (2.137,4.175) ( 0314,-1.503)
(-0429, 8.448) | (-0.109, 1.817) (-0.163, 0.301) (-4.424,-2233) | (-0951,-0473) | (-0.125, 0.038)
6 12 49 8x8 44.8 (-9.852, 5.218) | (-2.124, 4.143) (-0.314, 1.440) ( 9.852,-5.218) (2124,-4143) ( 0314,-1.440)
(-0455, 8.347) | (-0.111, 1.805) (-0.162, 0.298) (-4.410,-2.202) | (-0.950,-0470) | (-0.126, 0.036)
8 40 141 8x8 409.5 (-9.877, 5.224) | (-2.130, 4.152) (-0310, 1434) ( 9877,-5224) | ( 2.130,4.152) | ( 0.310,-1.434)
(-0456, 8.349) | (-0.110, 1.806) (-0.165, 0.298) (-4411,-2201) | (-0.950,-0470) | (-0.123, 0.042)
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Table 4.1b Convergence of complex surge radiated potential and scattered potential at different points on a circular cylinder with
radius a =10 m, and draft b=30m. for = 1.0 rad/sec and B =30° with element/node distribution and number of Gauss points used
for the integration. Also shown are relative cpu times required.

Mesh

Num. of
Integ. Pts

Normalized
cpu time

Point 7

Point 8

Point 9

Point 10

Point 11

Point 12

Num. of | Num. of
elements] nodes
2 11
4 21
8 33
8 33
9 34
12 49
24 85
40 141
12 49
12 49
40 141

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

2x2

8x8

8x8

1.0

3.2

8.2

83

9.0

17.7

56.5

162.2

109

409.5

(-9.792, 5.190)
(-0.528, 8.926)

(9714, 5.175)
(-0.444, 8.407)

(-9.826, 5.203)
(0455, 8.431)

(-9.862, 5.198)
(-0.453, 8.368)

(-9.953, 5.203)
(-0460, 8.503)

(-9.860, 5.218)
(-0.454, 8.352)

(-9.878, 5.221)
(-0.457, 8.360)

(-9.877, 5.223)
(-0.456, 8.347)

(9934, 5243)
(0429, 8.448)

(-9.852, 5.218)
(-0455, 8.347)

(-9.877, 5.224)
(-0456, 8.349)

(-2.091, 3.775)
(-0.174, 1.929)

(-2.085, 4.119)
(-0.121, 1.806)

(-2.110, 4.166)
(-0.122, 1.810)

(-2.126, 4.153)
(-0.112, 1.806)

(-2.142, 4.215)
(-0.119, 1.827)

(-2.125, 4.146)
(-0.111, 1.805)

(-2.129, 4.151)
(-0.111, 1.807)

(-2.130, 4.152)
(-0.110, 1.806)

(-2.137, 4.175)
(-0.109, 1.817)

(-2.124, 4.143)
(-0.111, 1.805)

(-2.130, 4.152)
(-0.110, 1.806)

(-0.288, 1.242)
(-0.216, 0.258)

(-0.296, 1.248)
(-0.174, 0.294)

(-0.299, 1.241)
(-0.175, 0.293)

(-0.336, 1.661)
(-0.146, 0.299)

(-0.330, 1.479)
(-0.156, 0.295)

(-0.314, 1.480)
(-0.162, 0.299)

(-0.315, 1.467)
(-0.162, 0.299)

(-0.310, 1.463)
(-0.164, 0.299)

(-0314, 1.503)
(-0.163, 0.301)

(-0.314, 1.440)
(-0.162, 0.298 )

(-0.310, 1.434)
(-0.165, 0.298)

(9.792,-5.190)
(-4.434,-2384)

(9.714,-5.175)
(-4.394,-2228)

( 9.826,-5.203)
(4421,-2231)

(19.862,-5.198)
(-4.407,-2.207)

(9.953,-5.203)
(-4.427,-2244)

( 9.860,-5.218)
(-4410,-2204)

( 9.878,-5.221)
(4.413,-2204)

( 9.877,-5.223)
(-4.411,-2200)

( 9.934,-5.243)
(4.424,-2233)

( 9.852,-5.218)
(4.410,-2202)

( 9.877,-5224)
(-4411,-2201)

( 2.091,-3.775)
(-0.964 ,-0.553)

(2.085,-4.119)
(-0.946,-0475)

( 2.110, 4.166)
(-0.952 ,-0.474)

( 2.126,-4.153)
(-0.951,-0474)

(2.142,-4.215)
(-0.956 , -0.481)

(2.125,-4.146)
(-0.950,-0470)

( 2.129,-4.151)
(-0.951,-0470)

( 2.130,-4.152)
(-0.950,-0.470)

( 2.137.-4.175)
(-0.951,-0473)

(2.124,-4143)
(-0.950,-0.470)

( 2.130.-4.152)
(-0.950,-0.470)

(0.288,-1.242)
(-0.143, 0.007)

( 0.296,-1.248)
(-0.118, 0.048)

( 0.299,-1.241)
(-0.119, 0.048)

( 0.336,-1.661)
(-0.144, 0.008)

( 0.330,-1.479)
(-0.142, 0.013)

( 0.314,-1.480)
(-0.126, 0.037)

( 0.315,-1.467)
(-0.126, 0.036)

( 0.310,-1.463)
(-0.123, 0.042)

( 0.314,-1.503)
(-0.125, 0.038)

( 0.314,-1.440)
(-0.126, 0.036)

( 0.310,-1.434)
(-0.123, 0.042)




4.2 Sum- and Difference-frequency Loads on ISSC TLP

The ISSC TLP is a fictitious TLP created to allow the ocean engineering
community to have a common structure to compare and validate different techniques
developed to better understand the response of ocean structures to wave loading (Eatock
Taylor and Jeffreys, 1986). The properties of the ISSC TLP are presented in Table 4.2.
As can be seen, the TLP has three planes of symmetry, and has columns that are
comparable in size to the cylinder used to show convergence of the first-order scattered

and radiation problems in the previous section.

In this section results will be presented for the second-order sum- and difference-
frequency hydrodynamic loads on the ISSC TLP. Although the Green's function utilized
is only valid for deep water, the tethered TLP will be assumed to still be anchored at a
distance of 450 m. below the still water level, which results in tether lengths of 415 m. In
order to observe the significance of the first-order body motions on the second-order

hydrodynamic loads, a fixed (stationary) ISSC TLP is also considered.

The frequency range considered in the computation of the second-order, sum- and
difference-frequency loads on the ISSC TLP in bichromatic bidirectional deep water
waves is 0.5 < v = w?a/g < 1.5, where a is the column radius. Before these loads are
computed, the issue of TLP discretization is addressed. Figure 4.3 shows four different
discretizations (meshes 1 - 4) of the ISSC TLP having 208, 393, 500, and 604 nodes
respectively. These four discretizations are used to obtain the surge, heave, and pitch
radiated potentials as well as the scattered potential along the water line of the column
located on the first quadrant (column 1). Results for two dimensionless frequencies are
presented. These frequencies correspond to the smallest frequency (i.e., v = 0.5) and the

largest sum-frequency (i.e., the double frequency associated with v = 1.5) in the range for
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Table 4.2 Geometric Dimensions and Structural Properties of the ISSC TLP (Eatock

Talyor and Jeffreys, 1986).

Parameter
Spacing between column centers
Column radius
Pontoon width
Pontoon height
Draft
Wave height
Weight
Displacement
Tether pretension per group
Tether axial stiffness per group
Tether length
Waterplane area
First moments of waterplane area
Second moments of waterplane area
Product moment of waterplane area
Roll & pitch moments of inertia

Yaw moment of inertia

Vertical position of center of gravity above keel
Vertical position of center of buoyancy above keel

Vertical position of center of rotation above keel

52

Value

86.25m

844 m

7.5m

10.5m

350m

20m

40.5 x 106 Kg
54.5x 106 Kg
4.5x 106 Kg
2.0325 x 105 kN/m
4150m

894.0 m?

0.0 m3

1.6787 x 106 m4
0.0 m3

8237 x 10° Kg m?

98.07 x 109 Kg m2
38.0m

9.0m
380m
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Scattered Potential Amplitude

Scattered Potential Amplitude

co= 0.762 fad/sec.

0 45 90 135 180 225 270 315 360

Local angle 0 (degrees)

10 : :
= 2.156 rad/sec.

0 45 90 135 180 225 270 315 360

Local angle 0 (degrees)

Fig. 4.4a Variation of scattered potential amplitude around the water line of

column 1 with TLP discretization. Notation: —- — - Mesh 1, .. Mesh 2,
— —~— Mesh 3, and Mesh 4.
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Surge Radiated Potential Amplitude

0 45 90 135 180 225 270 315 360

Local angle 6 (degrees)

Fig. 4.4b Variation of surge radiated potential amplitude around the water line of

column 1 with TLP discretization. Notation: —- —- Mesh 1, ... Mesh 2,
——— Mesh3, and Mesh 4.
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Fig. 4.4¢c Variation of heave radiated potential amplitude around the water line of
column 1 with TLP discretization. Notation: — - —~ Mesh 1, - Mesh 2,
——— Mesh3,and Mesh 4.
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Pitch Radiated Potential Amplitude
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Pitch Radiated Potential Amplitude
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Local angle 0 (degrees)

Fig. 4.4d Variation of pitch radiated potential amplitude around the water line of

column 1 with TLP discretization. Notation: — - — - Mesh 1, - Mesh 2,
——— Mesh 3, and Mesh 4.
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associated with v = 1.5) in the range for which second-order loads are to be computed.
The results are presented in Figs. 4.4 as plots of the amplitude of the potential around the
column. From the figures it can be seen that there is significantly more oscillation of the
velocity potential for the higher frequency. This suggests that the wave frequency plays a
role in the selection of mesh discretization. It is also seen that the heave mode requires a

finer mesh for convergence of the potentials as compared with the other modes.

Next, a comparison with published results of the first-order loads is presented. It
should be noted that the specifiations of the ISSC TLP place it in water depth of 450 m.,
not in deep water as will be assumed in this study. For this reason, small differences
between the present results and published results for the ISSC TLP in finite water depth
are to be expected, especially at low frequencies. The magnitudes of the exciting forces
and moments and the added mass and radiation damping components in the various
modes of oscillation are compared with the corresponding estimates of Korsmeyer et al.
(1988) who used the computer program WAMIT. Utilizing a mesh of 4048 constant
panels (over the entire TLP), they obtained the exciting forces and moments and the
added mass and radiation damping values at seven specific wave periods (2, 6, 10, 14, 18,
20, and 22 secs.) The results presented herein are given as plots in the dimensionless
frequency range v = ®?a/g < 1.5 (a being the column radius). With the exception of the 2-
second period, the results given by Krosmeyer et al. fall within this dimensionless
frequency range. For the results presented, both the mesh containing 320 nodes (mesh 2)
and the one containing 604 nodes (mesh 4) were used to perform the calculations
producing similar results throughout the frequency range considered. For the coarser
mesh, mesh 2, the number of nodes results in a 2560 x 2560 system of equations for the
source strengths, compared to the 4048 x 4048 system resulting from the constant panel
method. This again shows the benefit of utilizing higher order elements for the solution of

the first-order problem. An examination of Figs. 4.5 and 4.6 shows that, there is good
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Exciting load amplitudes

0 0.25 0.50 0.75 1.00 1.25 1.50

Dimensionless frequency v

Exciting load amplitudes

0 0.25 0.50 0.75 1.00 1.25 1.50

Dimensionless frequency v

Fig. 4.5 Exciting load amplitudes on the ISSC TLP in dimensional (SI) units for
(a) B=0%and (b) P=45° Notation: —®— Fx, --A-- 10Fz, 8 My/10.
Symbols represent the results obtained by Korsmeyer et al.
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Fig. 4.6 (2) Added mass and (b) radiated damping on ISSC TLP in dimensional
(SD) units. Notation: —e— A,,B;;, --A-- Ajs, 10 Byj, e

As5/1000,B55/ 1000, ---8--- A,/ 10000, B¢g/ 10000. Symbols represent
the results obtained by Korsmeyer et al.
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agreement between the two methodologies at the larger frequencies (where the influence
of the sea bed is insignificant), and that the agreement for the added mass and radiation
damping values is not as good. This slight discrepancy results from the fact that the
structure discretization is more critical in the radiation problem since the structure itself is
responsible for generating the wave field as opposed to the scattering problem, when its
contribution to the wave field is less due to the presence of the incident wave field.
Overall, however, the results shown are seen to be in agreement with those obtained from
the WAMIT program. It should be emphasized again that the present numerical technique
is valid in deep water, whereas the results presented by Krosmeyer et al. were obtained
for the ISSC TLP situated in water depth of 450 m. From part (b) of Fig. 4.6, it is seen
that there is a discrepancy in the results for heave added damping. However, the values
themselves are small, and the discrepancies occur at the relatively low frequencies where

the finite water depth still plays a role.

As was discussed in Section 4.1, an accurate solution to the first-order problem
depends on proper discretization of the structure. An adequate discretization will be one
that is able to accommodate the smallest waves to be studied. For this reason, two
meshes are used in the computation of the second-order hydrodynamic loads: a fine mesh
(604 nodes) for the sum-frequency loads, and a coarser mesh (320 nodes) for the
difference-frequency loads. The selection of these meshes is in accordance with the
practice of having a minimum number of nodes per wavelength. In this study a
dimensionless frequency range 0.5 < v = w?a/g < 1.5 is used. For the sum-frequency case,
this results in the wavelengths in the range 8.84 m. to 106.06 m. These wavelengths are
critical in the selection of the mesh discretization, and in the selection of the radial
distance R delineating the numerical and analytical integration domains of the free-

surface integral (Kim, 1992, Lee et al., 1991, and Newman and Lee, 1992).

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Results for the second-order sum-frequency loads on the ISSC TLP in
bichromatic bidirectional waves are presented to illustrate the effect of wave
directionality on the hydrodynamic loads. For this reason, three incident wave angle
combinations are selected: Bj = 0°, By = 45°; Bj = 45°, By= 0°; and B; = By= 22.5°.
Unidirectional loads were also computed for 0 and 45 degrees, but are not presented
herein in the same format. Due to the large number of figures generated from this study,
the unidirectional results are only used to obtain ratios for the different loads from the
bidirectional cases. Although the results will be discussed from different perspectives,
the discussion will be focused primarily on the effect of directionality on the second-

order hydrodynamic loads.

The hydrodynamic loads are presented as quadratic transfer functions (QTFs)
which are shown as surface plots (and corresponding contour plots) of the dimensionless
frequency components vj, Vi, for different combinations of wave incidence. In all cases,
the QTTFs satisfy the symmetry relation resulting in surface plots that are symmetric about
the line vj = vk. The figures are ordered to facilitate comparisons between similar load
components (i.e., surge, sway, etc.) for different combinations of incident wave
directions. For every mode of loading, three sets of (a) and (b) figures may be compared
to investigate the effect of wave directionality and first-order body motions. Each of these
sets corresponds to a particular pair of angles of wave incidence. The effect of body
motions may be easily seen by comparing parts (a) and (b) in each of the figures. The
effect of wave directionality may be quantified by comparing sets of three consecutive
figures corresponding to the incident wave combinations: j = 0°, Bk = 45°; Bj = 45°, Bk =
0°; and B; = Bk = 22.5°. The unidirectional set is presented to show that the hydrodynamic
load QTFs resulting from waves at 0° and 45° are not equal to those arising from those at

the "average angle" of 22.5°. All load QTFs are presented in dimensionless form. The
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non-dimensionalization factor for the forces is pgaljl', while for the moments, the factor

is pga?l'jT', with a equal to the column radius of 8.44 m.

Figure 4.7 presents the second-order sum-frequency surge QTFs for a fixed and
tethered ISSC TLP for incident wave combinations of B; = 0°, By = 45°. It can be seen
from the figure that the QTFs are oscillatory and that, in general, they increase with
increasing frequency. The oscillatory nature of the curves is caused by hydrodynamic
interaction effects between the TLP columns. In comparing the surge QTFs for the fixed
and tethered cases [parts (a) and (b) of the figure], it is seen that while there are slight
differences in the QTF values, their magnitude and general behavior is very similar.
Figure 4.8 presents similar results as those in Fig. 4.7, but for a different wave incidence
angle combination of f; = 45°, Bx = 0°. As for the B; = 0°, B = 45° case, the QTFs are
again oscillatory and increasing with frequency, and the QTF values for the latter wave
incidence combination are, in general, higher in magnitude. It should be noted that the
QTFs from Figs. 4.7 and 4.8 do agree with each other when vj =vg (ie., for
monochromatic waves). However, for bichromatic waves, they differ significantly. For
example, for values along vk = 0.5, (i.e. along the left edge of the surfaces), the QTF
values in Fig. 4.7 oscillate in the range 0.0 to 2.0. In Fig. 4.8 the QTF values are seen to
reach values greater than 8.0 along the same constant-frequency line. This clearly shows
the effect of wave directionality. Comparing the (a) and (b) parts of these figures shows
that while there are slight differences in the QTFs over this bi-frequency range, they are

not significantly affected by first-order body motions.

The computation of the hydrodynamic load QTFs in the bidirectional case
involves considerably more computational effort than the corresponding unidirectional
calculations. Therefore, one approach that has been suggested to estimate the effect of

wave directionality is to evaluate the load QTFs in unidirectional waves with an angle of
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incidence equal to the average angle of the two wave components. In this case, the
unidirectional angle is 22.5°. The surge sum-frequency QTFs are shown in Fig. 4.9
corresponding to incident wave angles B; = By = 22.5°. In this case, the oscillatory nature
of the surge QTFs is seen to be more pronounced and, as expected, the QTF values are
significantly different from those in Figs. 4.7 and 4.8. Not only are the QTFs in Fig. 4.9
more oscillatory than those in Figs. 4.7 and 4.8, they are also larger in magnitude over
wider frequency ranges. For the tethered ISSC TLP, the QTFs vary in a more severe form
reaching dimensionless values up to 10.0. Regarding the effect of first-order body
motions on the QTFs, it is seen from parts (a) and (b) of Fig. 4.9 that they are more
significant in the unidirectional case than in the previous bidirectional cases considered. It
appears that the lack of symmetry in the incident wave components results in an additive
contribution to the second-order loads, as compared to the 0° and 45° cases, which have
symmetry at each of the the first-order wave components. It is also seen that the most
significant contribution of the first-order body motions to the unidirectional QTFs occurs
in the vicinity of monochromatic waves indicating a strong dependency on whether the
first-order body motions caused by each of the wave components are in phase with each

other.

Figures 4.10 - 4.12 show the corresponding sum-frequency QTFs for the sway
loading. As expected, the sway QTF values are lower than the corresponding surge QTFs
due to the larger projection of the wave components onto the x-axis than the y-axis. In
this case, however, the unidirectional QTFs corresponding to Bj = Bk = 22.5° are seen to
be more uniform than the bidirectional cases. Comparing Figs. 4.10 and 4.11, the effect
of wave directionality is again easily seen. Along the vk = 0.5 line, the QTF values in
Fig. 4.10 oscillate between 0.0 and 2.0, while those in Fig. 4.11, while oscillatory, have

an almost linear variation from dimensionless values of 1.0 to 3.0. As was the case for
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surge QTFs, the effect of first-order body motions is rather small for the bidirectional

case, but more pronounced in the unidirectional case.

Although the surge and sway loads are important at the sum-frequency, more
empbhasis is placed in the QTFs for heave, roll and pitch at the higher frequencies. This
emphasis is due to the fact that in these vertical modes the TLP has a much higher natural
frequency than at the horizontal modes of oscillation. Thus, accurate predictions of the
second-order exciting loads in heave, roll and pitch are essential to predict the high
frequency response of the structure. In this study, the second-order response is not
computed. The emphasis is in recognizing the fact that wave directionality significantly

affects the second-order exciting loads and therefore the structural response at this order.

Figures 4.13 - 4.21 present the sum-frequency QTFs in heave, roll and pitch for
the ISSC TLP. As was the case for the surge and sway modes, the influence of wave
directionality is seen by comparing consecutive sets of three figures (i.e., Figs. 4.13 - 4.15
for heave, 4.16 - 4.18 for roll, and 4.19 - 4.21 for pitch). Figure 4.13 shows that the
heave sum-frequency QTFs for Bj = 0°, By = 45° is relatively uniform with a peak at a
monochromatic wave frequency v = 1.1. This behavior is also true for the heave QTFs
shown in Fig. 4.14 which correspond to incident wave angles B; = 45°, By = 0°. For the
unidirectional case, Bj= Bk = 22.5°, this is true only for the QTFs corresponding to a
fixed TLP. The effect of first-order body motions on the heave QTFs in the
unidirectional case (Bj= Bk = 22.5°) is seen to be very significant. Body motions lead to
a large increase in the heave QTFs. Although not explicitly shown here, it has been
found that the increases in these QTFs are not the result of the free-surface integral, nor
the first-order potential contribution to the second-order force. Instead, they are the result
of the term arising from the structural boundary condition relating the assisting radiated

potential directly to the first-order body motions. As stated above for the surge QTFs, the
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lack of symmetry in the incident waves seems to be the source of the significant additive
contribution to the second-order loads. Figures 4.16 - 4.21 show the variation of the sum-
frequency QTFs on the ISSC TLP in the roll and pitch modes. In general, their behavior
is similar to those exhibited by the sway and surge QTFs. For this reason, the effect of
first-order body motions is not as pronounced in these modes as was for the heave mode.

The influence of body motions is, again, more evident in the unidirectional case.

As indicated above, the emphasis of this study is in providing evidence that the
effects of wave directionality and first-order body motions, while not always observed,
must be acknowledged as possible controlling aspects for the design of floating offshore
structures. One of the most significant implications of bidirectional waves is the resulting
non-zero yaw moments arising from waves at angles of incidence of 0° and 45°, which,
by themselves, do not produce yaw moments on symmetric structures. This result, more
than any of the other results, highlights the importance of accounting for wave
directionality when present in the design of floating offshore structures. Figures 4.22 -
4.24 show the sum-frequency yaw moment QTFs for the different incident wave angle
combinations. As was the case with the surge and sway loads, the QTF values are
oscillatory and increasing with increasing frequency. Again, the QTF values for the §; =
0°, Bk = 45° case are, in general, larger than those for the B; = 45°, Bk = 0° case. It is also
seen that the QTFs for the unidirectional case exhibit a significantly different behavior
than those for the bidirectional cases. For this mode, the first-order body motions do not

seem to significantly influence the QTFs, even in the unidirectional case.
Results for the second-order difference-frequency load QTFs on the ISSC TLP in
bichromatic bidirectional waves are presented in Figs. 4.25 - 4.42. As for the sum-

frequency case, three incident wave angle combinations are used: Bj = 0°, Bk = 45% Bj =

45°, Bk = 0°; and B; = Bx = 22.5°. In general, for the frequency range considered, the
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effect of first-order body motions is seen to be almost insignificant for the difference-
frequency case. For the most part, in all six modes of loading both the (a) and (b) figures
possess similar behavior and exhibit similar magnitudes. It is also seen that for the two
bidirectional cases considered, the difference-frequency QTFs are more uniform than the
corresponding sum-frequency QTFs. This behavior is not true for unidirectional waves,
due to the hydrodynamic interactions between the wave components and the columns of
the TLP. Despite the relatively mild variation of the sway difference-frequency QTFs,
there is a distinct difference between the Bj = 0°, Bk = 45° case and the Bj = 45°, By = 0°
case. The former exhibits dimensionless QTF values less than 4.0, while in the latter case
the QTFs can attain values up to 7.0. The results obtained for the difference-frequency
load QTFs are in agreement with those observed by Kim (1992) indicating that the
assumption of wave uni-directionality is not necessarily conservative as far as low-

frequency loading is concerned.

In order to more distinctly see the effect of wave directionality on the second-
order load QTFs, Tables 4.3 and 4.4 present ratios of the maximum vertical force, and
overturning moment (i.e., the combined effect of roll and pitch) sum-frequency QTFs in
bidirectional waves to the corresponding quantities in unidirectional waves. Only the
vertical mode ratios are shown at the sum-frequency because, as stated earlier, they are
relevant in the high frequency design of TLPs. A similar table for maximum horizontal
force difference-frequency QTFs (combined surge and sway) is presented in Table 4.5.
The first two rows of Table 4.3 present the ratios of maximum sum-frequency heave QTF
for bidirectional waves with Bj = 0°, Bk = 45° to those arising from unidirectional waves
at Bj = Bk = 0° and B; = Bk = 45°. Rows three and four contain the ratios of the maximum
heave sum-frequency QTF for bidirectional waves with B; = 45°, Bk = 0° to those arising
from unidirectional waves at Bj = Bx= 0° and Bj = Bx= 45°. Tables 4.4 and 4.5 present

similar ratios for combined roll and pitch sum-frequency QTFs, and for combined surge
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and sway difference-frequency QTFs. These loads were combined to allow for a better
comparison of the wave loading at the different wave directions. It was not possible to
compare individual modes since for the unidirectional 0° case, sway and roll QTFs are
identically zero for a symmetric structure. The fact that there is no table presenting the
QTF ratios associated with yaw mode in itself points out to the relevance of
bidirectionality. All these ratios are, of course, infinite since, for symmetric structures
such as the ISSC TLP, unidirectional waves at 0° and 45° do not cause any yaw moment.
In the tables, the upper triangle contains the results for the tethered ISSC TLP, while the
lower triangle contains the results for a fixed TLP. For each frequency pair, the ratios are
presented so as to compare row one to row two, row three to row four, and then further
compare rows one and two to rows three and four (i.e., compare the bidirectional 0-45
case with the 0°-0° and 45°-45° case, then the 45°-0° case with the 0°-0° and 45°-45°
case, and finally, compare the ratios themselves for the 0°-45° and 45°-0° cases). In
these tables it is seen that the QTF ratios vary significantly from unity. Furthermore,
some of these values are significantly larger than one, indicating that for some wave
frequency combinations bidirectional waves result in higher load QTFs than those
obtained from unidirectional waves, and therefore bidirectionality should be accounted

for in the design of floating offshore structures such as TLPs.
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Table 4.3 Ratio of the maximum second-order sum-frequency vertical force QTF with
different angles of wave incidence H*(mj,cok;Bj,Bk) to those resulting from unidirecional
waves H*(coj,o.)k;Bq,Bq). The upper right triangular matrix contains the QTF ratios for a
tethered ISSC TLP, the lower left triangle contains the QTF ratios for a fixed ISSC TLP.
Inrow 1,B;=0°,0,=45°, and Bq= 09 inrow2,=B=0°,B,=45°, and Bq= 459,
inrow 3, B=45°,B,=0°, and qu 09 inrow 4,B=00°, B,=45°,and B,;=45°.

V= 0.5 0.7 09 1.1 1.3 15
V= 0.18 074 031 022  9.90 1.40 0.67
0.15 0.19 030 037 083 2.20 0.46
0.5 0.18 0.74 026 08l 729 052 0.49
0.15 0.18 0.26 137 06l 0.82 0.34
0.17 034 | 056 141 053 1.08 0.79
07 0.33 316 | 392 231 0.69 1.51 0.99
' 0.23 034 | 0.54 1.62 L12 049 0.17
045 316 | 376 265 144 069 022
0.32 0.83 1.29 2.43 134 035 0.65
09 0.62 2.77 5.0 469 221 0.78 148
111 0.99 129 2.42 1.21 0.37 0.65
2.12 330 509 4.61 198 082 148
1.36 0.22 1.94 102 | 079 o031 0.32
11 0.69 0.37 1.64 1.10 130 098 0.65
1.20 0.60 176 102 | 078 028 148
0.61 1.02 149 1.10 130 091 2.99
1.49 08 032 036 007 | 007 0.55
13 1.65 0.97 076 073 010 | 0.3 0.41
0.90 0.57 0.38 032 007 | 007 0.86
0.99 0.62 090 063 010 | 012 0.65
0.55 0.95 086 046 071 1.38 L11
15 0.52 1.41 1.59 072 043 1.48 2.30
045 0.29 1.29 1.76 1.04 1.38 1.10
0.42 042 239 275 0.64 148 2.28

v= 05 0.7 0.9 11 13 15
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Table 4.4 Ratio of the maximum second-order sum frequency overturning moment QTF
with different angles of wave incidence H"‘(coj,mk;ﬁj,ﬁk) to those resulting from unidirec-
ional waves H*(mj,mk;Bq,Bq). The upper right triangular matrix contains the QTF ratios
for a tethered ISSC TLP, the lower left triangle contains the QTF ratios for a fixed ISSC
TLP. Inrow 1, ﬁj= 0°,B,=45°, and Bq= 09 inrow 2, = ﬁj= 0°,B,=45°, and Bq=
459°; in row 3, Bj= 45°,B,=0°, and Bq= 09; in row 4, Bj= 0°,B,=45°, and Bq= 450,

V= 0.5 0.7 0.9 1.1 13 15
Vi 0.62 0.71 0.65 0.45 0.38 2.67 1.57
1.14 0.99 1.15 0.82 0.45 1.07 1.27
0.5 0.62 0.72 0.60 0.25 0.58 3.89 1.39
1.14 1.00 1.06 0.46 0.70 1.55 1.12
0.24 0.44 0.60 0.64 0.55 1.04 0.57
07 0.49 0.70 1.11 0.59 1.06 1.55 0.73
' 0.45 0.44 0.60 111 0.87 1.89 0.95
0.93 0.70 1.10 1.03 1.66 2.83 1.22
0.43 0.27 0.50 3.06 2.27 1.11 0.37
0.9 0.57 0.50 0.45 071 0.79 1.53 0.28
0.63 0.76 0.50 3.06 2.53 2.12 1.45
0.83 1.44 0.45 0.71 0.88 2.92 1.1
0.41 091 3.90 3.09 3.08 454 0.66
11 0.42 0.89 0.75 1.07 1.05 0.67 0.66
091 1.68 4.86 3.09 3.07 5.19 1.15
0.93 1.64 0.93 1.07 1.05 0.77 1.15
2.25 0.78 0.88 3.04 3.82 3.00 1.19
13 0.77 1.03 1.67 0.63 0.50 0.53 0.57
426 1.67 1.58 3.28 3.82 3.00 1.90
1.46 2.20 3.00 0.68 0.50 0.53 0.91
1.98 1.18 0.57 0.72 1.20 1.00 0.88
15 1.19 0.75 0.44 0.83 0.42 0.42 0.65
2.14 1.96 1.45 1.07 2.07 1.00 0.88
1.28 1.25 1.13 123 0.72 0.42 0.65

V= 0.5 0.7 0.9 1.1 13 15
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Table 4.5 Ratio of the maximum second-order difference-frequency horizontal force QTF
with different angles of wave incidence H‘(mj,(ok;Bj,ﬁk) to those resulting from unidirec-
tional waves H‘(mj,mk;Bq,Bq). The upper right triangular matrix contains the QTF ratios for
a tethered ISSC TLP, the lower left triangle contains the QTF ratios for a fixed ISSC TLP.
Inrow 1, Bj= 0°, B,=45°, and By=0°; inrow 2,= Bj= 0°,B,=45°, and Bq= 450,

in row 3, Bj= 45°,B,=0°, and Bq= 0°; inrow 4, B;=0°, B=45°, and Bq= 450

V= 0.5 0.7 0.9 11 13 15
Vs 0.42 1.49 0.05 0.05 0.84 0.21 0.15
0.25 0.28 0.05 0.04 0.20 2.62 1.65

0.5 0.42 1.49 0.43 0.71 5.98 0.59 0.20
0.25 0.28 0.42 0.57 1.44 7.36 2.26

0.03 0.30 0.69 0.07 0.16 4.07 0.40

07 0.04 1.04 1.20 0.06 0.13 0.62 441
‘ 0.35 0.30 0.69 0.39 0.70 8.61 0.51
0.45 104 1.20 037 0.55 1.30 572
0.05 0.1 0.46 0.53 0.1 033  33.62

0.9 0.05 0.13 0.42 0.39 0.10 0.27 0.94
0.65 0.39 0.46 0.53 0.39 063 4170

0.62 0.46 0.42 0.39 0.37 0.52 1.16

1.38 0.11 0.03 0.28 0.29 0.17 0.36

11 0.19 0.09 0.03 0.26 0.34 0.20 0.37
11.10 0.73 0.46 0.28 0.29 0.34 0.49

1.53 0.62 0.41 0.26 0.34 0.39 0.51

0.21 4.00 0.34 0.19 0.17 0.16 0.17

13 2.37 0.56 0.25 0.18 0.22 0.27 0.24
0.63 9.37 0.73 0.37 0.17 0.16 0.26

7.04 131 0.54 0.36 0.22 0.27 0.38

0.15 0.39 8.01 0.42 0.22 0.06 0.13

15 1.62 3.39 0.90 0.39 0.29 0.11 0.26
0.21 053  10.04 0.53 0.27 0.06 0.13

2.29 4.64 1.13 0.50 0.36 0.11 0.26

V= 0.5 0.7 0.9 11 13 15
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CHAPTER FIVE

ARRAYS OF BOTTOM-MOUNTED, SURFACE-PIERCING
CYLINDERS IN BICHROMATIC BIDIRECTIONAL WAVES

Consider a structure consisting of an array of M bottom-mounted, surface-piercing
vertical cylinders of arbitrary, uniform cross-sections bounded by Co= C; U C; ... U Cpy,
situated in water of constant depth d. In this chapter, a numerical solution is presented for
the second-order sum- and difference-frequency hydrodynamic loads in bichromatic
bidirectional waves. This derivation has many similarities with that obtained in Chapter
Three for arbitrarily-shaped structures in deep water. The main difference between the two
cases is that for the array of bottom-mounted cylinders case, the second-order loads on
each of the cylinders may be of interest, requiring the computation of the assisting radiated
potential due to the oscillation of each of the cylinders making up the array while holding all
others fixed. The other difference is, of course, in the solution to the first-order potentials

that each of the cases requires.

This chapter starts with a derivation of a solution for the first-order scattered
potential and the assisting radiated potential needed for the computation of the second-order
sum- and difference-frequency loads due to the interaction of the array of cylinders with a
bichromatic wave system represented by the superposition of two waves of amplitudes T
with frequencies ®;, and incident direction B; j = 1, 2. The boundary-value problem for
the first-order scattered potential is similar to that for the ocean structure in deep water, with
the exception of an additional bottom boundary condition requiring that the vertical velocity
at the sea bed be zero. Also, for fixed structures such as this one, V, = 0, therefore the

body motions are zero and there is no need to compute a first-order radiation potential. An
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assisting radiated potential, however, is still needed for the computation of the second-

order hydrodynamic loads on the array.

As in Chapter Three, the jth component of the first-order potential is decomposed

into incident and scattered potentials. The spatial component of the incident potential is

given by
(1) _ gl cosh kei(z+d) (1)
q’jl = w; cosh kyd ‘le (x,y), (5.1a)
in which
\P(JII) = eikojx cos Bj +ysin Bj), (5.1b)

where T'j is the amplitude of the jth incident wave component and k; its associated

wavenumber related to the wave frequency by the dispersion relation (oj2 = gkojtanh [ko;d].

5.1 First-Order Scattered Potential Solution

For wave diffraction by an array of structures possessing arbitrary cross-sections
which are uniform with depth, the jth component of the first-order scattered potential may
be written as

(yy _ _ 18T cosh kej(z+d) 1)
Pis® = -7 Tcoshkgd  Tis @ (5:2)

where X = {x,y,z) and [ = {x,y}.
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The boundary-value problem for ‘I’Jfls) can be shown to be

V2 + k3w =0 in V, (5.3)

m
a\P’S

a\?(})
— = - —51-11'— on Cp m=1,2,...,M, (5.4

oY
fim ‘/_{ - ko ¥y | = 0. (5.5)

In Eq. (5.3), V is the fluid domain in any horizontal plane. It is noted that the form for
d>§ls) given by Eq. (5.2) identically satisfies the boundary conditions on Sy and Sg. The

above problem for ‘Pgls) will be solved utilizing a source distribution method in two

dimensions. The jth component of the scattered potential is taken to be of the form

‘Pgls)(Io) = (_[ Ojs (') Go(wjiLo,r') dL. (5.6)

o

A suitable Green's function G,(wj;L,r') is given by

Go(@prr) = 3 HOkoR1), (5.7)

where H(l) is the Hankel function of the first kind of order zero, r'

r = (x,y') and
Ri=V (x-x)2+(y-y)?.

Letting f, be a point on Cp,, then Eq. (5.6) may be used to express the scattered

velocity normal to the structure at [, as

y()
—;L—u)-v(zo) is (50) + I WD) %5 (@jrair) dL, (5:8)
C

o
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in which Y (r,) is the interior angle at r,. For smooth contours, Y (r,) takes a value of 7.

The cylinder contours are now discretized into a total of M' higher-order line
elements each described in terms of N, nodes for a total of Ny nodes on the cylinder
contours. Next, the variation of the scattered source strengths over each of these elements
is expressed in terms of its corresponding values at the nodes and appropriate shape
functions. For , at the nth node ( 1, =1, ), after applying the structural boundary

condition, Eq. (5.4), equation (5.8) becomes

) M. Re I 3G
S () = M) o (1) + D D o5 (L) J Ni 52 @) dL, (5.9)
m'=1 =l aC,,.

where i* is the node number associated with the ith node of the m'h element in the global
system. Allowing n to vary from n = 1 to n = Ny results in a system of Nt x Nt linear
equations which can be solved for the unknown source strength values at the nodes. The

contour integrals are carried out utilizing standard one-dimensional Gauss quadrature.

Once the source strength values at the nodes are computed, the velocity potential at

any point [ in the plane may be determined from the discretized version of Eq. (5.6),

namely
M Ne
) '
Yis = > olg (L) j N; G, (@jr r) dL. (5.10)
m'=1l i=1 ACm‘
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Taking derivatives of Eq. (5.10) with respect to x and y yields

is ( J Ni g—(co,,z ir) dL, (5.11a)

m'=l =l Cp

QU
?e"_?é
= |7 "
t= I3
]
MZ
Q
[7,)
I'-l

ois (L) I N r(m,,_ ) dL. (5.11b)

vl &
3y - z
These expressions, combined with Eq. (5.2) are used to express the velocity

potential and water particle velocities at any point strictly inside the fluid domain V as

Ml
igl'j cosh Kei(zy+d J.
(1)(Xn) = gJJ COCS:OShO]l(((z);ld ) 2 Z (l) ([ ) N G ((!)."L 1.[) dL, (5 123)

_l |_

q)(l) M J
T o - —.1—-4—°°2‘3J§,°£‘Z;;';"”2 2 Sjs () N,r«oj,r i) dL,

=l =1

(5.12b)

(1) M
_ gl cosh kj(zp+d) ) I
; (X.n) ‘ COSh kojd 2—1 ; 0 ('[l') Nl 3 (mjaL ,I') dL,
(5.12¢)

and

o)
—;J—(&) = ko tanh koj(zy+d) B{g(Xn). (5.12d)
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5.2 Radiated Potential Solution

In the computation of the second-order hydrodynamic loads, the solution to the
assisting radiated potential is required. In particular, the solution for the velocity potential
generated by the oscillation of the mth cylinder in the pth mode. Although the cylinders are
bottormn mounted (i.e., fixed), the solution of the potential due to the fictitious motion of the
cylinders is possible. For an array of bottom mounted cylinders of constant cross-section,
the heave (p=3) mode of oscillation cannot be determined. Therefore, in the subsequent
derivation, p may take values 1, 2, 4, 5, and 6; associated with oscillations in surge, sway,
roll, pitch, and yaw modes, respectively. It should be noted; however, that the yaw mode
of oscillation is only relevant when discussing the oscillation of the entire cylinder array as

a single unit.

For an array of vertical cylinders of arbitrary cross-section, the z-dependency of the
linearized assisting radiation potential, due to the oscillation of the mth cylinder in the pth

mode, may be expanded in terms of eigenfunctions,

o0

N _ cosh )&"(z+d) cos AL (z+d)
‘Dmp(X) = ——_c sh A% mp_ qg p(L) (5.13)

where the wave numbers are given by the positive real roots of the dispersion relations,

(o£0)* = gAjtanh A7d and (@ + @y ) = - g A tan A d.

Using Eq. (5.13), the boundary-value problems satisfied by ‘Pr‘:f;(:_) and ‘P,ﬁ)(g),

q=1, 2, can be shown to be

V2ot wits g in V, (5.14)
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) 2 sinh 2A%d

mp _

on ~ 2\%d + sinh 23%d

Vimphip on Cpp=1,2,6, (5.15a)

dW¥pe 4 cosh A%d [1-coshA¥d]

Jm - 207 = sinh 270} Vmpp on Cp p=4,5, (5.15b)

aalr'::z =0 on Cp, n=1,2,....M (n#m), (5.15¢)
p=1,24,5,6,

ii_’:o‘j? {a—\;f‘i-ilg W;ﬁ} = 0, (5.16)

VIRE AT wE = 0 in V, (5.17)

%ﬁ = Zkgd Sin:::‘ii ’;‘d Vmphp on Cphp=1,2,6, (5.18a)

IVE. 4 cos Afd [-1+coshid] on Cpp=4,5 (5.18b)

on ~ A[2)%d + sin 20%d] mpflp

@
v,
-GTE =0 on C,,n=1,2,..,M (n%m), (5.18¢)
p=12,4,5,6,
‘Pﬁ; -0 as r-eo, (5.19)

where the z-dependency in Eqgs. (5.14) - (5.19) has been removed by invoking the

orthogonality of the vertical eigenfunctions.
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The solution to the assisting radiated potential is similar in form to that for the jth
component of the scattered potential. The propagating component of the assisting radiated

potential at the sum- and difference-frequency is taken to be of the form,

¥op(to) = I Opp @) Go(@5,x) dL, (5.202)
C

[}

while the gth evanescent component is given by

W) = .[ O () Gy(0®51.r) dL. (5.20b)
C

[

Suitable Green's functions Go((oi;;,g'), and Gq(coi;z,z'), q =1, 2,-- for the above

representations of the radiated potential are given by

Go@5irr). = 2 HY Ry (5.21a)

and

1
Gy(0%Lr), = -
q h=-7

—K_(MRy), (5.21b)
T ° 9

in which Ko denotes the modified Bessel function of the second kind of order zero.

After discretization of the cylinder contours and application of the boundary
condition at r, = 1, located at the nth node, the following equations are obtained for the
source strengths associated with the propagating mode of the assisting radiated potential at

the sum- difference-frequency:
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Ne

2 c,m J N; ;
i 0) In.L dL + Y(r In
AC ( ) ( ) P ( )

m=1 =l

2 sinh 27~*d
md + sinh 21* [Vimpnp] (ta) p=1,2,6 nonCp, (5.22a)
M’ Ne
m'=] i=1 m

_ 4 cosh Ad [1-coshAfd] [Vinphp] (1) =4,5 nonCp,  (5.22b)
AF[2A%d + sinh 2A%d] "0 p=4,5, W (.

M’ e
0G
> Omp (L) j Ni 5.2 (05m0) dL +Y(1) ops () = O
m=1 i AC,,.
p=12,3,5,6, nnoton Cp, (5.22¢)
The corresponding equations for the qth evanescent component are
M' Ne
2 2 om (L) .[ N, '5‘9(0) k) AL + Y1) o ()
m'=1 =l AC,,
2 sin 2X‘td
[Vimphp] (fn) p=1,2,6, nonCp, (5.23a)

A.*d + sin 2k¢d
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Ne

"
Z Z Gf (r,) j N: —‘1(<0 nd) dL + Y(@) oF p (In)
AC,

m'=l i=1

+ +
- 4 cos l& [-1+coskqd]
x: [wgd + sin 27Ltd]

[Vinphp] (£0) p=4,5nonCp,  (5.23b)

M' Ne
> ; o (1) J N -3—9(60 tnr) AL + V() OF (1) =

m'=1

p=1,2,3,5,6; nnoton Cp,. (5.23¢c)

Allowing n to vary from n = 1 to n = Nt results in a system of Nt x Ny linear
equations which can be solved for the unknown source strengths at the nodes forq =0, 1,
2, ..., Q; where Q is sufficiently large to ignore the contributions of the larger evanescent
modes to the radiated potential. Once the source strength values at the nodes are computed,
the velocity potential at any point [, in the fluid domain may be determined from Egs.

(5.13) and (5.20) as

h AX(z+d
O (X) = — (T ) Z 2 L) | ootz a
m h 2% s :

X(z+d
N i COS 7» (Z+ )z 2 (Ei,) J- Ni Gq(mi;zn,z') dL. (5.24)
AC,,.

g=1 CcOs A.id m'=1 i=l
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5.3 Approximation of Hydrodynamic Loads on Deep Draft Floating

Structures

As discussed in Chapter One, the solution to the problem of wave diffraction by an
array of cylinders may be used to approximate that of wave interactions with a deep draft
multi-column structure. For instance, the first-order body motions of a multi-column
floating structure of a given draft (with the exception of heave motion) may be computed
utilizing the above solution for the first-order problem resulting in considerable savings in
computational effort compared to that required in the full three-dimensional solution.
Furthermore, the computation of the second-order sum-frequency hydrodynamic loads on
deep draft multi-column structures may also be approximated by the solution to the cylinder

array problem.

Consider a structure consisting of M columns of arbitrary cross-section and draft b.
Given the rapid decay of the velocity potential with depth, it is assumed that the solution for
the velocity potential presented in Section 5.2 is valid for the truncated column problem.
However, when computing the first-order hydrodynamic loads, the pressure integrals are
carried out only from z=-b to z=0. The computation of the added mass and radiation
damping coefficients needed for the solution of the equation of motion requires a slight
modification to the structural boundary condition given by Egs. (5.15) and (5.18) , as only
a portion of the bottom-mounted structure (from z = -b to z = 0) is allowed to oscillate.
Furthermore, the structure oscillates as a unit, as opposed to section by section as was the
case in the assisting radiated potential problem. The modification to the structural boundary
condition essentially scales the results from the bottom mounted case at each of the
evanescent modes and the propagating mode. It is noted that this is not a simple scaling of

the final radiated potential.
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The expressions for the complex form of the exciting and reaction loads for the

truncated structure are given by

i) p _[cb‘” ds

(e)
Fjp

{ J.Ocosh koj(z+d) dz} J[‘{’m ‘Pl(-l)] np dL
®; cosh kOJ b Co !

_ pgl’j [ sinh ko;d - sinh ko;(d-b) ] (1)
- koj cosh ko;d 2 Z [¥si

¥ 2 f N; mpdL,
AC_ .

m'=1 i=1

(5.25)

1
ij,?p = i p jd)‘ )

0

= iwjp { cosh k4 J; cosh kj(z+d) dz j W g 1p dL
Co

0
L J
+i cos kgd bcoskq,(z+d)dz ‘I‘fl;;lnde }

=1
4 Co

[ sin kq;d - sin kgi(d-b) j
= i0p T { ]g:u cos kqjgl ] z Z [lptf_]]r:)]l‘ Nj npdL

m'=l i=1 m'

M' Ne
[ sin kgid - sin kqj(d-b) ] 0 J’
) i kgj cos kq;d z:i ; [F gmlie a2, 'Ni npdL } .

q=l

(5.26)
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5.4 Second-Order Hydrodynamic Loads

The expressions for the second-order loads on the cylinders are similar to those
derived in Chapter Three. The free-surface integral is treated in a similar manner to that
discussed previously. In order to obtain the coefficients needed for the integral in the
exterior region of the free-surface, Sg,, the asymptotic expansions of the potentials are
needed. These expressions are similar to those presented in section 3.6. given for infinite
water depth, with the exception that the z-dependency is no longer ez, but rather it is now
of the form cosh[ k (z+d)] / cosh[kd] to account for the finite depth. Also, in the expression
for asymptotic tail of the free-surface integral, Eq. (3.90), the expressions for Cf and C%

associated with waves of finite depth are given by

Ci = - K (1 —tanh?kgd) — K (1 - tanh2 keed)

+ (0 % @) Koj Kok tanh kejd tanh Kokd, (5.27a)
and
Cs = CT F (0% o) Koj kok- (5.27b)

One of the advantages of the constant cross-section of the cylinders is that the z-
dependency of the potentials and velocities is known, enabling the z-integrations to be
carried out analytically, and requiring only contour integrals. With this in mind, the

expression for the sum- and difference-frequency loads on the mth cylinder in a direction

associated with the pth mode, szﬁp, are given by

qt
lp(wﬁwk)(q +q%") f ) MW
th = 2v jkl kjl {\Ij [L; +q§ Li___m_E]

Imp

S )
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ipg(wj+ oK) (g + q5*) J c
+ jkl1 kjl ot + +
J{ege 2 v Hnpens Jos
P =

(5.28a)
where
. (1 2 )
Ga= 7y Py \0 5 -z ) ok Vo)V ol (5.28b)
+ _ (. T M), g D* h*
Py —( o ) { V¥ V¥ + Z‘P(kl) '-V—\Pg!s)*
2
(* gD ki
(1) p(1)* M @), @ gl
[ Vif Hys + ¥y Yig+ ¥ ‘PES)] } (5.28¢)
and the constants L and Lz, q= 1, 2,-- are given by the definite integrals,
0
+ cosh k¥(z+d) cosh A% (z+d)
Ly = > dz, (5.284)
4 cosh x¥d cosh lﬁd '
and
0 +
L - cosh k¥(z+d) cos Al (Z+d)d
4 cosh k*d cos kﬁd 2 (5-28¢)
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CHAPTER SIX

IMPLEMENTING NUMERICAL COMPUTATION OF SECOND-ORDER
SUM-FREQUENCY LOADS ON A FOUR-CYLINDER STRUCTURE

As mentioned previously, an array of bottom-mounted surface-piercing cylinders
may be used to model deep draft, multi-column structures where, due to the deep draft, the
effect of the pontoons is assumed negligible. In this section, a four-cylinder array is utilized
to model a typical deep draft TLP. The structure consists of four circular cylinders of radius
a, center-to-center spacing s = 5a, situated in water depth d = 4a. Therefore, the cylinder
centers are located at (x,y) = (-2.5a, -2.5a), (+2.5a, -2.5a), (+2.5a, +2.52a), and (-2.5a,
+2.5a) respectively (see Figure 6.1). This structure was selected as a model of a deep draft
TLP. It is assumed that due to deep draft, the effect of the pontoons is negligible. As
indicated in Chapter Five, the solution to the first-order problem for the array of cylinders
is reduced to a two-dimensional problem. This results in a considerable saving in the
required computational effort. This simplification also allows for increased accuracy in the

modeling of deep draft structures over a wider frequency range.

Before obtaining numerical results for the second-order hydrodynamic sum-
frequency loads, a study was performed to assess the convergence characteristics of the
numerical technique adopted. The insights gained from the convergence study were then

applied to the implementation of the theory developed in Chapter Five.

6.1 Convergence of Linear Solutions.

In order to obtain high accuracy in the solution, numerical testing was carried out to

select the optimum size of boundary elements and the number of terms in the evanescent
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series and to ensure that the numerical results obtained were indeed convergent. It is clear
that obtaining meaningful results for the second-order hydrodynamic loads depends
critically on the accuracy of the solution for the scattered and radiated potentials. In the
following, the integrations over a boundary element of the Green's functions and their
derivatives were carried out numerically utilizing a 16-point Gauss quadrature over a

parametric line element.

The four-cylinder structure used to model a deep draft TLP was discretized using
different numbers of quadratic elements per cylinder. Also, the solution to the radiated
potential was obtained with different numbers of terms in the evanescent series. These
different combinations were used to obtain solutions for both the scattered and radiated
potentials at dimensionless frequency v = w2?a/g = 2.0. For all cases where the mesh was
being tested, the series for the radiated potential was truncated at Q = 30. For the case
where the value of Q was being tested, the cylinder was discretized with 16 elements per
cylinder. The results of this convergence study are presented graphically in Figs. 6.2 - 6.4
as variations of the computed velocity potentials around the cylinder contours. The

convention for the cylinder numbering is shown in Fig. 6.1.

Figures 6.2 show the variation of the real and imaginary parts of the scattered

potential ‘P(s') around each of the four cylinders with different mesh discretizations for an
incident wave angle 8 = 22.5°, Three mesh discretizations are investigated: mesh 1 consists
of (the minimal) four quadratic elements per cylinder; mesh 2 has four times as many
elements (i.e., 16 elements per cylinder); and mesh 3 has 64 elements per cylinder. It can
be seen that numerical convergence is achieved as the number of elements increases. The
variation around each of the four cylinders of both the real and imaginary parts of the

scattered potential as computed with the 16 elements per cylinder mesh is seen to be in
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Real part of Scattered Potential

Local angle 0 (degrees)

Y YOS TP B P UPUPPUPURE DY 3 NPT
& A : 3 : : e,

Imaginary part of Scattered Potential

0 45 80 135 180 225 270 315 360

Local angle 6 (degrees)

Fig. 6.2a Variation of scattered potential on cylinder 1 with body discretization for

B =22.5°. Notation; - four elements per cylinder, ——— 16 elements per
cylinder, and 64 elements per cylinder.
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Real part of Scattered Potential

0 45 80 135 180 225 270 318 360

Local angle 0 (degrees)

Imaginary part of Scattered Potential

0 45 90 135 180 225 270 315 360

Local angle 0 (degrees)

Fig. 6.2b Variation of scattered potential on cylinder 2 with body discretization for

B =22.5° Notation: - four elements per cylinder, ——— 16 elements per
cylinder, and 64 elements per cylinder.
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Real part of Scattered Potential

0 45 90 135 180 225 270 3%5 360

Local angle 0 (degrees)

Imaginary part of Scattered Potential

0 45 90 135 180 225 270 315 360

Local angle 6 (degrees)

Fig. 6.2c Variation of scattered potential on cylinder 3 with body discretization for

B =22.5°. Notation: -+ four elements per cylinder, ——— 16 elements per
cylinder, and 64 elements per cylinder.
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Real part of Scattered Potential

135

Local angle 6 (degrees)

Imaginary part of Scattered Potential

0 45 90 135 180 225 2}0 3 1I 5 360

Local angle 0 (degrees)

Fig. 6.2d Variation of scattered potential on cylinder 4 with body discretization for

B =22.5°. Notation: -+ four elements per cylinder, ——— 16 elements per
cylinder, and 64 elements per cylinder.
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good agreement with the corresponding values obtained with the 64 elements per cylinder

mesh.

Figure 6.3 presents the variation of the real and imaginary parts of the radiated
potential Wp around cylinder 1 due to the oscillation of the entire structure in three different
modes, p=1 (surge), p=5 (pitch) and p=6 (yaw), with different discretizations. Due to the
symmetry of the structure, the variation of these potentials is similar over the other three
cylinders and is therefore not presented. Also, due to the symmetry of the structure, the
potentials in sway and roll modes are similar to those in surge and pitch, and are therefore
not presented. As was the case for the scattered potential, numerical convergence is
achieved with a mesh of 16 elements per cylinder. It should be noted that while the values
of the potentials at the nodes may be well approximated even with a smaller number of
elements, say eight elements per cylinder, the variation of the potential within the element
may not be correctly described due to the fact that the wave kinematics vary more rapidly
than the quadratic variation assumed within each boundary element. For this reason, it is
recommended that the minimum number of elements be such that the maximum spacing

between consecutive nodes is no greater than one-eighth of the wavelength.

Figure 6.4 presents the variation of the real part of the surge and pitch radiated
potential around cylinder 1 resulting from truncating the evanescent series at different
values, Q. It should be noted that the imaginary part of the radiated potential is unaffected
by the evanescent terms of the series and, therefore, it remains unchanged from the values
presented in Fig. 6.3. Results are presented for values of Q = 0, 2, 5 and 20. It is seen that
the curves associated with Q = 5 and Q = 20 are in good agreement with each other

indicating numerical convergence.
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Imaginary part of Surge Potential
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Fig. 6.3a Variation of surge radiated potential on cylinder 1 with body discretization
Notation:  =«eeee four elements per cylinder, ——— 16 elements per cylinder, and
64 elements per cylinder.
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-0.25 1

-0.50 -

Real part of Pitch Potential
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Local angle 6 (degrees)

Imaginary part of Pitch Potential

0 4 90 135 180 205 270 315 360

Local angle 0 (degrees)

Fig. 6.3b Variation of pitch radiated potential on cylinder 1 with body discretization
Notation: oo four elements per cylinder, ——— 16 elements per cylinder, and
64 elements per cylinder.
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Real part of Yaw Potential

Imaginary part of Yaw Potential

0 45 90 135 180 225 270 315 360

Local angle 0 (degrees)

0 45 90 135 180 225 270 315 360

Local angle 0 (degrees)

Fig. 6.3c Variation of yaw radiated potential on cylinder 1 with body discretization
Notation: -« four elements per cylinder, —— — 16 elements per cylinder, and
64 elements per cylinder.
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Real part of Surge Potential

0 45 80 135 180 225 2:10 375 360

Local angle 6 (degrees)

Real part of Pitch Potential

0 45 90 135 180 225 270 315 360

Local angle 0 (degrees)

Fig. 6.4 Variation of the real part of surge/pitch potential on cylinder 1 with different
number of evanescent modes Q. Notation: —-—- Q=0,+*+*+*Q=2,——— Q S,
and Q=20.
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Based on the results shown in Figs. 6.2 and 6.3, the number of boundary elements
per cylinder was taken to be 36 for the computation of the scattered and associated radiated
potentials to be used in the computation of the second-order sum-frequency hydrodynamic
loads. This requirement of a seemingly large number of elements is indeed necessary to
capture the variation of the assisting radiated potential at the sum-frequency. It is precisely
for this reason that the modeling of deep draft structures by bottom-mounted arrays of
cylinders is so appealing since achieving an adequate discretization at this frequency range
for a general three-dimensional structure would require a much more significant effort. As
far as the number of evanescent terms in the computation of the assisting radiated potential,

the series was truncated at Q = 30 to account for the higher frequencies.

6.2 Element Convergence on SF;,

The element discretization over the inner region and its effect on the accuracy of the
free-surface integral was investigated by varying the element mesh size. Four different
triangular element meshes (1, 2, 3 and 4 containing 608, 1382, 2592 and 3828 triangular
elements respectively) for the array of four cylinders are shown in Figure 6.5. It should be
noted that these meshes are not coincident with those adopted on the cylinder contours.
Indeed, these meshes start from a distance 0.1a away from the cylinders and extend to a
distance 6a. The reason for the meshes not starting from the cylinders is purely a matter of
convenience. Since the solution to the water particle velocities at points on the cylinder
contour requires an extra term related to the source strength at that point, the section
immediately surrounding the cylinders is treated separately from the rest of the region
SFi;. This distinction does not, in any way, affect the results presented herein, as the
purpose of the different discretizations is to show convergence with element distribution

within a defined region.
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The influence of element mesh size on the computation of the sum-frequency free-
surface integral contribution to the forces and moments in a portion of SF,; is presented in
Table 6.1 for a typical frequency pair V= 1.4, v, = 1.2. Three different incident wave
combinations are considered in the numerical testing: 3; = 09, By = 459; B; = 45°, B = 0°;
and B; = Bx = 22.5°. It can be seen that the contribution to the second-order sum-frequency
loads due to the free-surface integral in this region converges as the number of elements
used to discretize the free-surface domain increases. For the computation of the second-
order sum-frequency loads over the range (vj, V)= (1.0, 1.0) to0 (vj, v = (2.0, 2.0),
mesh number 3 was adopted. The selection of this mesh is consistent with the above

observations regarding the minimum spacing of nodes.
6.3 Convergence of Free-Surface Integral

The question of convergence of the complex free-surface integral with varying
distance R (radius of the imaginary circular truncation boundary) is now addressed. The
radial distance R was obtained by examining the behavior of the terms containing the
modified Bessel function K, while varying the radius R. For the sum-frequency case, the
partition distance, R, must be such that the asymptotic representations of the first-order
scattered potentials are valid. In the difference-frequency case, however, it is the frequency

of the assisting radiated potential that dictates the location of the artificial boundary.

Figure 6.6 presents the variation of the amplitudes of the free-surface contribution

to the sum-frequency pitch and roll moment QTFs, | I¢ |, for various values of R for the
previously described geometry at three incident wave angle combinations: ; = 0°, By =
459; B =459, By = 0° and B; = Bk = 22.5°. As in the previous case, a typical frequency

pair V= 1.4, v = 1.2 was used. The number of elements on the structural contours and the
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Fig. 6.6 Variation of the amplitude of the free-surface contribution to the sum-
frequency moment QTF, | I; |, with partition distance, R/a, for the four cylinder
structure at v; = 1.4, v = 1.2. Notation: —— Pitch, --e-- Roll.
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infinite series truncations are as outlined above. It can be seen from the figure, that the

estimates of the free-surface integrals converge as R/a increases.

6.4 Numerical Results and Discussion

Numerical results will now be presented for the sum-frequency hydrodynamic force
and moment QTFs (with respect to the still water level) for the four cylinder array described
above. Three incident wave directions are considered: B; = 0°, By = 45°; B; =45, By =
0°; and [ = B = 22.5°. The forces are nondimensionalized by pgal'jT, and the moments
by pgazl"jl“k. The dimensionless frequency range considered is 1.0 < v = w?a/g < 2.0. The
numerical results presented herein have been obtained with each cylinder contour
discretized into 36 quadratic elements (i.e. total number of nodes on the structural contour
is equal to 288). The infinite series in the radiation potentials was truncated after 30 terms.
The region Sg,, extends to r = 6a, the region Sk, extends to a radial distance of 30a as
suggested by Moubayed (1992b). Mesh 3 was utilized to discretize the free-surface domain

in the interior region (See Fig. 6.5).

The hydrodynamic loads are presented as QTF surface plots (and corresponding

contour plots) of the dimensionless frequency components vj, vk, for different

combinations of angles of wave incidence. In all cases, the QTFs satisfy the symmetry
relation resulting in surface plots that are symmetric about the line vj = vk. The figures are
ordered to facilitate comparisons between similar load components (i.e. surge, sway, etc.)
for different combinations of incident wave directions. The effect of wave directionality
may be quantified by comparing sets of three consecutive figures corresponding to the
incident wave combinations: Bj = 0°, B = 45°; B; = 45°, Bk = 0° and B; = Bk = 22.5°.

The unidirectional set is presented to show that the hydrodynamic load QTFs resulting from
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waves at 0° and 45° are in general not equal to those arising from a unidirectional analysis

at the "average angle" of 22.5°,

Figure 6.7 presents the second-order sum-frequency surge QTF on the four
cylinder structure for the incident wave combination ; = 0°, Bk = 45°. It can be seen from
the figure that the QTF values are oscillatory and that, in general, they increase with
increasing frequency. Due to the relatively large column spacing (as compared to the
wavelengths), the oscillatory nature of the QTFs is not very pronounced. For this particular
case, the variation of the QTF at constant frequency vj = 1.0 is seen to be almost uniform.
This is not the case observed in Fig. 6.8 which presents the corresponding QTFs for an
incident wave combination {; = 45°, By = 0°. These differences clearly indicate the effect
of wave directionality in the computation of the second-order sum-frequency loads. While
these two cases show remarkably different behavior throughout most of the frequency
range considered, they do agree with each other along the line vj = vk, corresponding to

monochromatic incident waves.

As indicated in Chapter Four, one approach that has been suggested to estimate the
effect of wave directionality on the second-order sum-frequency loads is to evaluate the
load QTFs in unidirectional waves with an angle of incidence equal to the average angle of
the two wave components. In this case, the unidirectional angle is 22.5°. The surge sum-
frequency QTFs corresponding to incident wave angles Bj = Bx = 22.5° are shown in Fig.
6.9. In this figure it can be seen that the QTFs are more oscillatory than in the previous two
cases. This is attributed to the interaction with the cylinders of the non-symmetric wave
field associated with incident waves at 22.5° (i.e., in the previous two cases, although the
second-order wave field is not symmetric, the first-order scattered wave field is. The 22.5°

case does not possess symmetry even at the first-order).
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Fig. 6.7 Hydrodynamic sum-frequency surge force QTF, H*(o)j,(ok;ﬁj,Bk), for four-cylinder structure with Bj
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Bk= 22.59°,

Fig. 6.9 Hydrodynamic sum-frequency surge force QTF, H*(mj,mk;ﬁj,ﬁk), for four-cylinder structure with Bj
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Figures 6.10 - 6.12 show the corresponding sum-frequency QTFs for the sway
forces. In this mode, the QTFs are significantly more oscillatory, even in the bidirectional
cases, and, in general, are larger for the Bj = 45°, By = 0° case, than for the B = 0°, B =
45° case. For the unidirectional case, the QTFs are seen to vary in a less oscillatory fashion

(i.e. the QTFs are seen to gradually increase with increasing frequency).

One of the drawbacks of using an array of bottom-mounted cylinders to model deep
draft structures is that the second-order heave force cannot be determined by the indirect
assisting radiated potential method since the structure cannot be oscillated in this mode.
Kim (1992) presented an approximate way to determine the second-harmonic loads on
arrays of bottom-mounted circular cylinders when used to model deep draft structures. This
approach, which obtains the second-order loads by integrating the second-order potential,
is based on the assumption that the second-order pressure at the bottom of the structures is
relatively constant. Therefore the second-order heave force may be obtained by multiplying
the area of the cylinder by the "average" pressure at the desired level on the cylinder. In the
present method, however, the second-order scattered potential is not computed, and
therefore, the heave forces may not be approximated. For this reason, the roll and pitch

QTFs are seen to behave in a manner similar to the surge and sway QTFs.

The sum-frequency QTFs in roll and pitch for the four cylinder structure are
presented in Figs. 6.13 - 6.18. As expected, due to the deep draft of the structure, the roll
and pitch moment QTFs behave in similar manner as the corresponding sway and surge
force QTFs. Again, it is seen that the roll moment QTFs are significantly more oscillating
than the corresponding pitch moment QTFs. These results are in contrast with those found
in chapter Four for the ISSC TLP, where it was seen that the roll and pitch moment QTFs

did not behave in an entirely similar manner as the corresponding surge and sway force
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B,= 22.5°.

Fig. 6.18 Hydrodynamic sum-frequency pitch moment QTF, H*(mj,u)k;Bj,Bk). for four-cylinder structure with Bj
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QTFs. It should be reiterated here that, for the frequency range considered in Chapter Four,

the ISSC TLP is not considered a deep draft structure.

Finally, Figs. 6.19 - 6.21 present the second-order sum-frequency yaw moment
QTF's for the four-cylinder structure at three incident wave angle combinations. It is seen
that in the lower frequency region, (v; < 1.5,vi < 1.5), where the sway force QTFs are
larger than the corresponding surge force QTFs, the yaw moment QTFs behave as the
former QTFs. At the higher frequencies, however, the yaw moment QTFs are more
influenced by the surge force component. In comparing Fig. 6.19 to Fig. 6.20, the effect

of wave directionality is clearly seen.

As observed in Chapter Four in Tables 4.3 - 4.5, the QTF values for the different
loadings in bidirectional waves may be significantly higher than those obtained from a
unidirectional wave analysis. Therefore, the effect of wave directionality should be
considered in the design of offshore structures. The purpose of this research is to point out
the effect of wave directionality in the second-order wave loading of offshore structures,
and therefore, throughout the presentation of the results, the actual values of the QTFs have
not been discussed in detail. This approach is in keeping with the goal of only presenting
evidence that wave directionality plays a role and may be a controlling aspect in the design
of offshore structures. The actual values of the sum-frequency QTFs are dependent on the
frequency range of interest, and on the relative dimensions and spacing of the various

components of the structure considered.
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CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

In this research a complete second-order solution is developed for the
hydrodynamic loads on ocean structures in bichromatic, bidirectional waves. The solution
to the first-order problem is obtained utilizing a Green's function approach using higher-
order boundary elements. The solution of the first-order diffraction problem yields the
excitation forces and moments on the structure, while the solution to the radiation
problem yields the corresponding first-order added-mass and radiation damping
coefficients utilized in the solution of the linear equations of motion. Through the
application of Green's second identity, the second-order hydrodynamic loads explicitly
due to the second-order potential components are computed without the explicit
computation of the second-order scattered potential. An efficient numerical technique,
that accounts for the directionality of the waves and the asymptotic behavior of the
integrand is presented to treat the free-surface integral which appears in the second-order

load formulation.

In the first part of this research, a numerical technique utilizing quadratic surface
elements is presented to obtain the second-order sum- and difference-frequency loads on
an arbitrarily shaped three dimensional structure situated in infinite water depth.
Numerical results are presented for the sum- and difference-frequency load QTFs on a
stationary as well as on the tethered ISSC TLP. The results shown illustrate the sensitivity
of the second-order wave loading to wave directionality at both the sum- and difference-
frequency. Also seen in the results presented for the ISSC TLP is the effect of first-order
body motions on the second-order sum- and difference-frequency hydrodynamic loading.

It is seen that, for the most part, first-order body motions do not significantly contribute
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to these loadings, but at certain frequency- and angles of wave incidence-combinations,

they may account for a significant component of the second-order loading.

In the second part of this research, an array of bottom-mounted, surface piercing
cylinders is used for the computation of the second-order sum-frequency loads on a deep
draft TLP. By exploiting the constant cross-section of the cylinder array, the z-
dependency of the solution may obtained analytically, thereby rendering the numerical
problem two-dimensional. This results in a considerable saving in the required
computational effort. This simplification also allows for increased accuracy in the
modeling of deep draft structures which would otherwise be impossible to analyze due to
limitations of local computer resources. To illustrate this point, numerical results for the
sum-frequency QTFs are presented for a four-column structure to represent a deep draft

TLP.

The numerical results suggest that wave directionality may have a significant
influence on the second-order hydrodynamic loads on large ocean structures at both sum-
and difference-frequencies and that the assumption of unidirectional waves does not
always lead to conservative estimates of the second-order loading. It is also found that
while the effect of first-order body motions is not significant throughout the entire
frequency range considered, they may have considerable influence at certain wave
frequency and incident angle combinations. Wave directionality and first-order body
motions are seen to play a significant role in the second-order loading, and should

therefore be accounted for in the engineering design of offshore structures.
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APPENDIX A

QUADRATIC SHAPE FUNCTIONS FOR SURFACE AND LINE
ELEMENTS

When using shape functions to describe the variation of a given parameter over a
line element or a surface element, the order of the approximation depends on the number of
nodes (or sampling points) utilized to define the shape functions. The number of shape
functions required to describe nth order variation over a line element is n+1. For
quadrilateral surface elements, the number of shape functions required to describe nth order
variation over the element is either (n+1)2 or (n+1)2 - (n-1)2 depending on whether all
nodes in the matrix or only the nodes on the boundary are used. For instance, eight or nine
nodes may be used to achieve quadratic variation over a quadrilateral surface element.
Similarly, twelve or sixteen shape functions may be used to achieve cubic variation over
quadrilateral surface elements. For triangular surface elements, the number of nodes (shape
functions) required to describe nth order variation over the element is [(n+1)2 +(n+1)]/ 2.
For instance, six and ten shape functions are required to describe quadratic and cubic
variation. Obviously, the more shape functions used to describe the variation over an
element, the more accurately it represents the actual variation. However, using the elements
having nodes only on the boundary has a great advantage: it requires fewer overall nodes to
describe any given parameter for any given order of element variation. For this reason, in
the following section, the shape functions for quadratic variation over surface elements will

be given only in terms of the eight-node representation.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A.l1 Line elements

In general, the form of the shape functions may be found by Legendre's formula:

n+1l
Lo = : (A1)
D (5 -8
j=1
j#i

where §i are the nodal coordinates.

Taking the parametric element in the range -1 <& < 1, with nodes at é, =-1, éz =

0, and §3 = 1, results in the following expressions for the quadratic shape functions:

L, =% (§-1) for the node at € = -1, (A.2a)
L, =5 (E+DE-1) for the node at & = 0, (A.2b)
and

L, =§ (&-1 for the node at € = 1. (A.2¢c)

A.2 Surface elements

The shape functions for surface elements may be obtained using the serendipity
method. Surface elements may be represented with either quadrilateral or triangular
elements. Depending on the application, one type of element may be more desirable over

the other.
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For a parametric surface element with four sides of length 2 and origin at its center,
either eight or nine nodes are used to obtain quadratic variation. In the interest of savings
in computational effort, eight-node representation is preferred over nine-node

representation.

Taking the parametric element in the range -1<&<1,-1 <n <1, (see Fig. A.1),

results in the following expressions for the quadratic shape functions:

N, =§ A+m) A +8) for the node at (§,n) = (1,1), (A.3a)
N, =2 q+m -8 for the node at (E:1) = (0,1), (A.3b)
N, =2 1+ E-D for the node at (En) = (-1,1), (A3c)
N, =3 1-51-1) for the node at (1) = (-1,0), (A.3d)
Ny =2 (-mE- 1) for the node at (E1) = (-1,-1), (A3e)
Ng =3 (1-m (-8 for the node at () = (0,-1), (A3D)
N, =2 (1-m) (1 +8) for the node at (E.1) = (1,-1), (A3g)
and

Ny =3 (1+8)(1-1) for the node at (1) = (1,0). (A.3h)
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(a) 8-node quadrilateral element

(b) 6-node triangular element

Fig. A.1 Quadratic quadrilateral and triangular elements.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For a parametric surface element with three sides, six nodes are used to obtain
quadratic variation. When working with triangular elements, natural triangular coordinates
are preferred over rectangular coordinates for the simplicity of their use. Triangular natural
coordinates, §;, at a point within the element are defined by &, = _Xl fori=1, 2,3 (see

Fig. A.2), where A is the total area of the triangle, and A, is the area of the triangle formed

by connecting the point of interest to the side opposite node i. It should be noted that

regardless of the actual area of the triangle, by their definition the natural coordinates vary

such that &, = 1-&, - &,, and therefore only two coordinates are necessary to define the

triplet.

Utilizing the natural triangular coordinates, the shape functions for a six node

triangular element are given by

N, =§,@5,-1 for the node at (€,.&,.£,) = (1,0,0), (Ada)
N, =§,(26,- 1 for the node at (€,.£,,E,) = (0,1,0), (A.4b)
Ny =8,(25;- 1) for the node at (§.£,.€,) = (0,0,1), (A.4c)
N, =48¢&, for the node at (&1,§2,§3) = (%,-12—,0), (A.4d)
Ny =4EE, for the node at (§,.5,,6,) = (0,%,15), (A.de)
and

N, =4&E, for the node at (§,£,,5,) = (%,O,li). (A.4)
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§, =4 §, = Ay &y = As
A A A
E;=1-&,-&,

Fig. A.2 Natural triangular coordinates.
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A.3 Numerical Integration Over Elements

The numerical integrations over arbitrarily shaped elements are achieved through a
mapping of the element into parametric space. A point on the physical three-dimensional
surface element r = (x,y,z) is mapped into the parametric element at point (§,1). Similarly,
for line elements, a point (x,y) is mapped in to parametric space &. The original integral is
reduced to the standard integration of the original function multplied by the magnitude of
the appropriate reduced Jacobian. It should be noted that although the parametric elements
are either one- or two-dimensional, they are used to integrate over two- and three-
dimensional boundaries. It is through the reduced Jacobian and the unit normal to the
element that this integration is possible. The reduced Jacobian is obtained as function of the

the derivatives of the shape functions as follows:

A.3.1 Line Elements

A differential segment is given by
dL=1GIdE, (A.5)

where G is is the reduced Jacobian and its magnitude, | G |, is equal to the magnitude of the

two-dimensional normal vector n, given by

g=(g1,gz)=(%§-, a_x) (A.6)

Hence, 1 G | is given by

IG 1= \/gf+g§ . (A7)
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These relationships are now used to evaluate the integrals of any function over the

physical line elements as
.[ f(x,y)dL = j f(xy) IG | dE. (A.8)
r, r,

A.3.2 Surface Elements

A differential area is given by

dS=1G I dt dn, (A.9)

where G is is the reduced Jacobian and its magnitude, | G |, is equal to the magnitude of the

three-dimensional normal vector p, given by

n.=(g1,gz,g3)=-§§ xgn;, (A.10a)
dy 0z dyodz

= =.=L= A.10b

&= (3t o an 2 (A.100)
dzdx 9Jzodx

_(9z9dx _0dzdx A.10c)

&= (32 o "o 2% (
dxdy 0xdy

= (=L .5= (A.10d)

8= (3z o0 an 3t )

Hence, | G | is given by

1Gl=\g>+gl+g? . A1)
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These relationships are now used to evaluate the integrals of any function over the

physical surface elements as

,S'. f(x,y,z) dS = j f(x,y,2) 1G 1 dE dn. (A.12)
S

€ P
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APPENDIX B

REDUCTION OF O(1/R) SINGULARITY BY POLAR COORDINATE
TRANSFORMATION

Consider a typical integral over an element, Se, of the function f(x,y,z) which has
singular behavior of order O(1/R) or O(1/R)? near one of the nodes which describe the

element. This integral is performed over a parametric element, Sp, and is given by

I= J. f(x,y,z) dS = j f(x,y,2) I GEM) | dE dn, (B.1)
S

e Sp

where the position vector r = (x,y,z) is related to the parametric coordinates (§,1) through

appropriate shape functions and the position vectors at the element nodes.

The parametric square elment Sy is a square element of side length equal to 2 with
origin at its center. Depending on the location of the singular node, the element is divided
into two or three triangular elements corresponding to the singular node being at the corner,
or the side of the element respectively. Then, for the case of the singular node being at one

of the corners (i.e., Sp is divided into two triangles),
2
I= Z J J fx,y,z) 1G(Em) | dE dn. (B.2)
=l s,

Employing triangular polar coordinates, each of the subelements, Sg,, is mapped

onto a unit square (see Fig. B.1). The corresponding shape functions for this mapping are

given by
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(b) Subdivision of Sp into triangular elements
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©.1) ()] 11 1)
1
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(c) Mapping of S:, onto a unit square by polar coordinates and further mapping onto
a square of length 2.

Fig. B.1 Triangular polar coordinate transformation.
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Ni=(1-p1), (B.3a)

N2 = pi(1-p2), (B.3b)
and
N3 =pp2. (B.3¢)

Equation (B.2) can now be written as

2
I=z], j J f(x,y,z) 1GEN) [ 2p1 Aj]dpidpa, (B.4)
J=

p

where A; is the area of the triangular subelement Sg,. The term in the square brackets
accounts for the mapping from the triangle to the unit square. In particular, the term p,,

which is directly related to the distance between the singular node and the integration point

on the element (i.e., p; is proportional to R), serves to reduce the order of the singularity in

the integrand facilitating the subsequent numerical integration.

A final coordinate transformation is invoked to carry out the numerical integration.
It consists of mapping the unit square, Sg,, onto a square of side length 2 with origin at its
center. The numerical integration is carried out utilizing a suitable Gauss quadrature in two
dimensions. One of the effects of the sequence of transformations is that they result in a
greater concentration of the Gauss integration points near the singular node. The
concentration of integration sampling points is clearly seen in Fig. B2 which shows the
location of the integration points on a square element with and without the above coordinate

transformation utilizing 2x2 and 4x4 Gauss integration.
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Fig. B.2 Distribution of integration points for 2x2 and 4x4 Gauss quadrature.




APPENDIX C

GEOMETRICAL SYMMETRY

Typical floating offshore structures such as TLPs possess symmetry to some
degree. Typical structures may have single, double or triple symmetry (see Fig. C.1). In
the solution to the first-order potentials, the coefficient matrix containing the different
integrals of the Green's function over the discretized equilibrium surface of the structure is
therefore seen to have similar sets of submatrices. This is important in that it significantly
reduces the effort required to obtain the first-order solution. Since the computational effort
required to solve a linear system of equations increases greatly with the number of

equations, a reduction in the size of the systems to be solved is of great advantage.

The matrix equation (3.20) may be written as

C;;, Ci2 . . . Cing ] (Sl‘ R
Csy C2n5 S, R>
S . =9 . ¥, (C.1)
Cng Cag Cagng \SnSJ \RHSJ

where ng is the number of similar geometrical sections needed to define the entire structure

(i.e., ng =2, 4 or 8).
Recognizing that due to the geometrical symmetry of the structure, all submatrices
in the coefficient matrix may be related tc the submatrices in the first column (or row), the

above system of ng x ng matrix equations may be modified accordingly to give
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(ITIICIITI") (ITI{S}) = ([TI{R}) (C.2a)

or

[C1{S}={R}, (C.2b)

where the transformation matrix, [ T ] consists of a set of null and identity matrices so
arrangedastoassurethepropertythat[T]'1= —;—[T]. Ge. [T][T]= nL [1]).
S S

Because of this relationship, the solution vector, { S }, may be obtained from the

vector { S } by

(S} =7-IT1 (3). (€3)

Due to the properties of the coefficient matrix (i.e, the symmetry of the structure)
and the orthogonality of the transformation matrix, the original system of equations is
decoupled (completely or partially), thus requiring solutions to smaller systems of
equations. The derivation leading to the decoupling of the system of equations for
structures possessing single, double, or triple geometrical symmetry is presented below.
The savings due to the geometrical symmetry originate from two sources. Firstly, the
assembly of the coefficient matrix is reduced by a factor of ng. Secondly, the task of
computing the solution to the original system of equations is replaced by that of solving
several smaller systems of equations, resulting in a considerable saving of computational
effort. The exact proportion of time savings relative to the original problem depends on the
computational effort required to assemble the coefficient matrix relative to that required to

solve the linear system of equations.
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C.1 Single Symmetry (Two Equal Sections)

For the case of single symmetry about y = 0, only one half of the structure is

discretized utilizing n; nodes. The resulting coefficient matrix is thus 2n; x 2n; in size. The

coefficient and transformation matrices may be written as

_1Cn
[C]—[C21
In2
[T]—[Inz
S
S} =9
{S} S,
)
R,
R} =9
{R} R,
.

In

-In,

Ci2
Ci2 Ciy p

where [ Iy, ] is an nz x n; identity matrix.

(C4a)

(C.4b)

(C.4c)

(C.4d)

Carrying out the symbolic multiplications, Eqn. (C.2b) takes the following form,

E:l 1 0"2
O nj -(_:22
where

[Chl=[Cnl+[Ci2]

[Crxl=[Cnl-[C2l
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Sy S]+Sz ﬁl R]+R2

§2 Sl'SZ ﬁz R;-R>

and [ Oy, ] is an nz X ny null matrix.

The 2n; x 2n; matrix equation (C.5) is now decomposed into two independent n,
X ny systems which may be solved directly for { S }. This vector is, in turn, combined

with the transformation matrix to obtain the solution for the original system, namely,

1
=93 - _ . C.6
: . ()

C.2 Double Symmetry (Four Equal Sections)

For the case of double symmetry, about y = 0 and about x = 0, only one quarter of
the structure is discretized utilizing nq nodes. The resulting coefficient matrix is thus 4n4 x

4ny4 in size. The coefficient and transformation matrices may be written as

gn glz 813 814 gn glz 813 gm
_ 21 22 23 24 | _ 12 11 14 13
(Cl= C31 Czz2 Ci33 Ciq || Ciz Cig Cyy Cia | (C.72)

Cs1 Csz Cy3z Cy4 Cia Ci3 Cp2 Cyy

In, Ing In, In,
In4 InA 'In4 'In4

[T]= , (C.7b)

In, -In, -In, In,
In, -Ing, In, -In,
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where [ I, ] is an n4 x ng4 identity matrix.

(C.7¢)

(C.7d)

Carrying out the symbolic multiplications, Eqn. (C.2b) takes the following form,

[ _
Cii On, Oy, On,
0n, Cp On, On,
0"4 On4 E:33 0n4
| Ony On,  On, Cas _
where

[Cul=[Cnl+[Ci2]+[C131+[Cis],
[Cl=[Cnl+[Ci]-[Ci3]-[Cul,
[Cs3] =[Cul-[Cr]l-[Ci3]l+[Cul,
[Cul=[Cnl-[Cprl+ [C3]-[Cul,

> =9

-
S1+S,+83+ 8,

S|+Sz-S3-S4
S1-S32-S3+ 84

and [ Op, ]is an ng X ng null matrix.

S1-S,+S3-84
. J

3

186

FJ ]

> = 3

(— A

(C.8)

Ry
R
R3
L R

P

e )

R1+R2+R3+R4
Ri+R32-R3-Ry4
R]-Rz-R3+R4

.

Rl-R2+R3-R4
N y
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The 4n4 x 4n4 matrix equation (C.8) is now decomposed into four independent n4

X n4 systems which may be solved directly for { S }. This vector is, in turn, combined

with the transformation matrix to obtain the solution for the original system, namely,

e 3 (_ _—  — _ )
S, S1+S2+S3+8,
Sz §|+§2-§3-§4
j =2 = = = = (C.9)
S3 S$1-S,-S3+84
S4 §|-§2+S_3-S—4
\ J \ J
C.3 Triple Symmetry (Eight Equal Sections)
For the case of triple symmetry, about y = 0, about x = 0, and about I x | =1y |,

only one eighth of the structure is discretized utilizing ng nodes. The resulting coefficient

matrix is thus 8ng x 8ng in size. The coefficient and transformation matrices may be written

as

[Cl=

C11C12C13C14C15C16C17C18 T

Cpy Co3
Ci3y Cs3
Caz
Cs2
Ce2
C2
Cs2 Cg3

21
31

Ci2
Ci3

Cis

Cis C
Cis Ci18 Ci7
Cis Cys
Ci7 Cis
Ci7 Cis

C43
Cs3
Cs3
Co3

Ci1 Cyg
Cia Cyy
13

4 Cas
C34 Css

Cas C45

Cs4 Css

C36 C37

6 Ca7

Cse Cs7

5 Ces Co7
5 Cy6 C77

Cgs Cgs

Ci3 Cys

Ci2C7Cig C
Ci12C1 CigCi7Ci6 C
Ci6 Ci1 Cis

6 C17 Ci4

Cis Ci2

Cg7

T C11C12C13C14C15C16C17Ci3
Ci5 Cig Cy7
15 Cie

Cis

Cin Ciz
5 Cig C13 Cy2

Ci

Ci3 Cia
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C38
Cag
Csg
Ces
Cys
Css

15

Ci2
Ci3
Cis
Cn

(C.10a)
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[T]=

{S}=X

In8
Ing
Ing
In8

ng
In8
Ing
In8

\.

Ing
'Ins
Ing
'Ing
Ing
'Ins

ng
.InB

Ing In8 In8 In8
Ing 'Ing Ing -Ing
-In,

'Ins I"S I"s 'Ins
Ing Ing -Ing -Ing
Ins 'I"s 'Iﬂs Ins

~Ing -Ing ~Ing -Ing

-

ng Iﬂs 'Ins I“s

J

Ing

ng
.]n8
_Ins
.In8
_In8
Ing
Ing

where In, is an ng X ng identity matrix.

Ing
“Ing
Ing

Ing
-Ing

Ing

Ing

(C.10b)

(C.10c)

(C.10d)

In this case, carrying out the symbolic multiplications, does not result in 8

independent systems of equations, as was the case for single and double symmetry. Instead

4 (ng x ng) and 2 (2ng X 2ng) systems are identified. These systems are given below:

[En] {§l} = {ﬁl}’
[C221{S2} = {Ro}.
[Css1{Ss} = {Rs},

188
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[Css 1 {S6} = {Rs}, (C.11d)

Cs; Co3 S; R;
& & | |8 7|&[ (1o
[ _ A _
Caa Cgy S4 R4
G T | 8] 7R (€110

where
[Cul=[Cnl+[Cnl+[Cil+[Cul+[Cis]+[Cil+[Cir]1+[Cisl,
[Cal=[Cnl-[Cl+[Ci3)-[Cul+[Cis]-[Cisl+[Ci7]-[Cis],
[Css1=[Cul+[Cil+[Ci3]+[Cial-[Cis]-[Ci6]-[Cir]-[Cis],
[Ces]=[Cuul-[Ci2]+[Ci3]-[Cral-[Cis1+[Cisl-[Crr1+[Cis],
[Cul=[Cul-[Cil+[Cis]-[Cir],
[Cx7]=[Ci2]-[Cul-[Cisl+[Cis],
[Cul=[Cul-[Cisl+[Cis]-[Ci7],
[Cagl=-[Ci2]+[Cis]+[Cis]-[Cis],
[Cl=[Cinl-[Cul+[Ci]-[Cisl,
[C7]1=[Cnl-[Cis]-[Cis]+[Cir],

[Css]l =-[Cr2]+[Cia]-[Cis]+[Cis].

[Css] = [Cii]-[Ci3]-[Cis]+[Cir ];

{Si} = (Si}+{S2}+{Sa}+{Sa}+(Ss}+{Se}+(S7}+{Ss},
{S2} = {Si1}-{S2}+{Ss}-{Sa}+{Ss}-{Se}+{S7}-{Ss},
{83} = {Si}+{S2}-{Ss}-{Sa}+{Ss}+{Se}-{S7}-{Ss},
{Sa} = {S1}-{S2} - {83} +{Sa}+{Ss}-{Se}-{S7}+(Ss}
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{Ss}= {Si}+{Sa}+{S3}+{Sa}-{Ss}-{Se}-{S7}-{Ss},
{Se} = {Si1}-{Sa}+{S3}-{Sa}-{Ss}+{Ss}-{S7}+{Ss}.
{S7} = {S1}+{S2} - {83} -{Sa} -{Ss}-{Se}+{S7}+{Ss},
{Ss} = {S1}-{Sa}-{Ss}+{Sa}-{Ss}+{Se}+{S7}-{8s};

and

{Ri} = {Ri}+{Ra} +{Rs}+{Ra} +{Rs}+{Re}+{Rs}+{Rg},
{Ry} = {Ri} -{Ra} +{Rs} - {Ra}+{Rs}-{Re}+{Rs}-{Rs},
{R3} = {Ri}+{Ra} - {R3} - {Re} + {Rs}+{Rg} - { Ry} - { Rg},
{Ra} = {Ri} - {R2} - {Rs} + {Ra} + {Rs} - {Re} - { Ry} + { Rg},
{Rs} = {Ri}+{Ra} +{Rs} +{Ra} - {Rs} - {Re} - { R} - { Rg},
(Re} = {Ri} - {Ra} +{Rs} - {Ra} - {Rs} +{Re} - {R7} + { Re},
{R7} = {Ri}+{Ra2} - {Rs} - {R¢} - {Rs} - {Re} + { Ry} + { Rg},
{Rg} = {Ri}-{R2} -{Rs}+{Ra}-{Rs}+{Re}+{Rs}-{Rg}.

The six sets of equations, (C.11a) - (C.11f), are now solved for { S }. This vector
is, in turn, used to determine the solution to the original system of equations, namely,

{81} =5({S}+{5) + {83} + {5 + {5} + {Se} + {57} + { 5g} ).
(82} = g({51} - {52 +{55) - {Sa} + (S5} - {Se} + (57} - {5a} ),
{83} = 5({S1}+ {52} - {53} - (Sa} +{Ss} + { Sel - {54} - {5} ).
(e} =g ({5 - {52 - {53} +(Sah + (S5} - (Se} - {57} + {54} ).
(S5} =g({S}+{5+{53) + {54 - {55 -{5¢ - {57} - {5} ).
(S} =g ({5} - {52 +{Ss} - (54} - {Ss} + { Seb - (57} + {5s} ).
{87} =g ({51} +{ 52 - {53} - {54} - {55} - {5} + {57} + {54} ),

(S} =g ({S)-{52) - {53 +(54 - (Ss}+{Se}+{5n} - {5} ).
190
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APPENDIX D
STIFFNESS MATRIX FOR TETHERED STRUCTURE

T

The stiffness matrix K defined by = - K x in Eq. (3.56) is given in this

appendix.

Consider a single (representative) cable n anchored at a point r, = (X;,¥n,2n) and to
the structure at a point whose equilibrium position is given by 1y = (x},y1,z5). Let the
equilibrium tension (pretension) in the cable be given by T,, its equilibrium length be L,
and its cross-sectional area and modulus of elasticity be given by A and E, respectively.

The six-component displacement x of the structure results in a displacement Ary, at rf which

is given by
Am = (X1,X2,X3) + (£ - @) X (X4,X5.X6), (.1

where [ represents the center of gravity of the structure.

This results in a force AT" on the structure whose components to the first-order in

small quantities are given by
T
AT® = z (T rpx + {Dofebd o ) o), (D.2)

i=1, 2, 3 in which the 3 x 6 matrix P" is defined by

1 0 0 0 z; - 2g - (8 - Ya)
P" = 0 1 0 - (zh - 2g) 0 Xp - XG , (D.3)
0o o0 1 Yn - ¥G - (X3 - XG) 0
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and the vector Q" is defined by

4 3N
- (Xh - Xp)
- (Y% - yo)
- (zh - zp)
[Q" = 9 . (D.4)

-(zh-zG) (yn - Yn) + (Yh-vyo) @} - zp)
- (X% - Xg) (2} - z7) + (24 -2zg) (X% - Xp)

-(yh - ¥6) (X7 - Xa) + (X% -xg) (Y% - ¥)
\. J

The moments caused by the cable tension forces may be written as
T, , -
[(axsixe) x (1 - 10)] x 1° @ - ) + (@& - 10) X AT™. (D.5)

This expression may be evaluated explicitly to yield the following moment components, for

i=123,

6
D2 AT Ry e sy T AE [ 1w - )], @ 5} @6

j=1

in which the 3 x 6 matrix R" is defined by

0 0 0  (¥n-Yo)yn-ym) + (zn - 26)zn - Zp)

~
<]
n
(o]
o
o

- (Y - Yyo)(Xi - X5)

0 0 0 - (zn - 2g)(Xn - X7)
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- (Xa - XG)(¥Yn - ¥ - (Xn - X6)(zn - Zn)

(Xn - XG)(Xa - Xn) + (z5 - 26)(zs - Zn) - (Y - Yo)z5 - z7) .

- (Z4 - Z6)(Yn - Y3 (X5 - XG)Xn - Xn) + (¥Yn - YO)¥n - y&)

(D.7)

and the elements of S" are given by

= (¥a-Y¥o) P§j - (zn-26) P}, (D.8a)
83 = (zh-26) P} - (x5 - xg) P};, (D.8b)
S5 = (xa-x6) P - (7 - yo) Pj;. (D.8c)

The above cable forces AT} in Eq. (D.2) may be identified with the terms of the cable

stiffness matrix associated with cable n as

6
ATM = - D KD x;, (D.9)
-
to yield
T To - AE _
K = 12 Py o Qo-fcba) 3 D [¢ - 5] Q (D.10)

fori=1,2,3andj=1,2,3,4,5,6. The remaining elements of the stiffness matrix K
may be obtained from the corresponding moments which are given by Eq. (D.6). Thus,

we have

% (Rt?] + S?u) + LT_—&CE—C)' [(In - Ig) X (fy - ..n)] QJ’ (D.1D)
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fori=4,56,j=1,2,3,4,5,6;and q =i - 3. For a structure possessing an array of
identical cables or tethers, the combined stiffness matrix may be obtained by linearly adding

the stiffness matrices from the individual cables, that is,
N,
K = K", (D.12)

where N is the number of cables in the system.
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APPENDIX E

FRESNEL INTEGRALS

The Fresnel cosine and sine functions C(x) and S(x), are defined by Abramowitz and

Stegun (1972) as
2
Cx) = J. cos(%—t—) dt, (E.l1a)
0
and
2
S(x) = I sin¢) dt. (E.1b)
0

Combining Egs. (C.1a) and (C.1b) into a complex form gives

X

A 2 2 irt?
Cx)+1S(x) = J ( cos(—“zt—) +1i sin(%t—) ) dt = j e 2 dt (E.2)
0 0

Substituting T = \/ _2EI; t in Eq. (E.2) and expressing the integral in terms of T leads to

be ) Bx
ixs o
eZ d =4 /‘3'2 [ e ar, (E3)
n
0 0

where

p=VE,
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which leads to

Bx
. 2
A /iﬁ I ePT 4T = Cx) +i Sx), (E.4a)
0

or
Bx
I J
_[ ePT 41 = ‘\/ 2 (co +isw ). (E.4b)
0

Similarly, we have that

Bxl
.l
I ePT T = ‘\/ fl; (cop +isay ), ES)
0
and
sz
inT2
_[ ePT aT = '\/ f;; (cixp +iS(x) ). (E.6)
0

Therefore, from Egs. (E.5) and (E.6), we get

sz

-
f ePT dT = '\/ % ( {ctxp) Cixy) J+i {50 -Sxp) }). (E.7)
Bxl
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Substituting r = T in Eq. (E.7) and integrating yields

. pr.
+1{S('\/_n—2)-5(‘\/_:—1)}). (E.8)

+i{%-s(—\/§—£—R- ). E9)
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